mirror of
https://git.tukaani.org/xz.git
synced 2024-04-04 12:36:23 +02:00
369f72fd65
misunderstanding of the code. There's no tiny fix for this problem, so I also cleaned up the code in general. This reduces the speed of the encoder 2-5 % in the fastest compression mode ("lzma -1"). High compression modes should have no noticeable performance difference. This commit breaks things (especially LZMA_SYNC_FLUSH) but I will fix them once the new format and LZMA2 has been roughly implemented. Plain LZMA won't support LZMA_SYNC_FLUSH at all and won't be supported in the new .lzma format. This may change still but this is what it looks like now. Support for known uncompressed size (that is, LZMA or LZMA2 without EOPM) is likely to go away. This means there will be API changes.
375 lines
9.8 KiB
C
375 lines
9.8 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file lzma_encoder.c
|
|
/// \brief LZMA encoder
|
|
//
|
|
// Copyright (C) 1999-2006 Igor Pavlov
|
|
// Copyright (C) 2007 Lasse Collin
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// NOTE: If you want to keep the line length in 80 characters, set
|
|
// tab width to 4 or less in your editor when editing this file.
|
|
|
|
|
|
#include "lzma_encoder_private.h"
|
|
#include "fastpos.h"
|
|
|
|
|
|
/////////////
|
|
// Literal //
|
|
/////////////
|
|
|
|
static inline void
|
|
literal_normal(lzma_range_encoder *rc, probability *subcoder, uint32_t symbol)
|
|
{
|
|
uint32_t context = 1;
|
|
uint32_t bit_count = 8; // Bits per byte
|
|
do {
|
|
const uint32_t bit = (symbol >> --bit_count) & 1;
|
|
rc_bit(rc, &subcoder[context], bit);
|
|
context = (context << 1) | bit;
|
|
} while (bit_count != 0);
|
|
}
|
|
|
|
|
|
static inline void
|
|
literal_matched(lzma_range_encoder *rc, probability *subcoder,
|
|
uint32_t match_byte, uint32_t symbol)
|
|
{
|
|
uint32_t context = 1;
|
|
uint32_t bit_count = 8;
|
|
|
|
do {
|
|
uint32_t bit = (symbol >> --bit_count) & 1;
|
|
const uint32_t match_bit = (match_byte >> bit_count) & 1;
|
|
rc_bit(rc, &subcoder[(0x100 << match_bit) + context], bit);
|
|
context = (context << 1) | bit;
|
|
|
|
if (match_bit != bit) {
|
|
// The bit from the literal being encoded and the bit
|
|
// from the previous match differ. Finish encoding
|
|
// as a normal literal.
|
|
while (bit_count != 0) {
|
|
bit = (symbol >> --bit_count) & 1;
|
|
rc_bit(rc, &subcoder[context], bit);
|
|
context = (context << 1) | bit;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
} while (bit_count != 0);
|
|
}
|
|
|
|
|
|
static inline void
|
|
literal(lzma_coder *coder)
|
|
{
|
|
// Locate the literal byte to be encoded and the subcoder.
|
|
const uint8_t cur_byte = coder->lz.buffer[
|
|
coder->lz.read_pos - coder->additional_offset];
|
|
probability *subcoder = literal_get_subcoder(coder->literal_coder,
|
|
coder->now_pos, coder->previous_byte);
|
|
|
|
if (is_literal_state(coder->state)) {
|
|
// Previous LZMA-symbol was a literal. Encode a normal
|
|
// literal without a match byte.
|
|
literal_normal(&coder->rc, subcoder, cur_byte);
|
|
} else {
|
|
// Previous LZMA-symbol was a match. Use the last byte of
|
|
// the match as a "match byte". That is, compare the bits
|
|
// of the current literal and the match byte.
|
|
const uint8_t match_byte = coder->lz.buffer[
|
|
coder->lz.read_pos - coder->reps[0] - 1
|
|
- coder->additional_offset];
|
|
literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
|
|
}
|
|
|
|
update_literal(coder->state);
|
|
coder->previous_byte = cur_byte;
|
|
}
|
|
|
|
|
|
//////////////////
|
|
// Match length //
|
|
//////////////////
|
|
|
|
static inline void
|
|
length(lzma_range_encoder *rc, lzma_length_encoder *lc,
|
|
const uint32_t pos_state, uint32_t len)
|
|
{
|
|
assert(len <= MATCH_MAX_LEN);
|
|
len -= MATCH_MIN_LEN;
|
|
|
|
if (len < LEN_LOW_SYMBOLS) {
|
|
rc_bit(rc, &lc->choice, 0);
|
|
rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
|
|
} else {
|
|
rc_bit(rc, &lc->choice, 1);
|
|
len -= LEN_LOW_SYMBOLS;
|
|
|
|
if (len < LEN_MID_SYMBOLS) {
|
|
rc_bit(rc, &lc->choice2, 0);
|
|
rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
|
|
} else {
|
|
rc_bit(rc, &lc->choice2, 1);
|
|
len -= LEN_MID_SYMBOLS;
|
|
rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
///////////
|
|
// Match //
|
|
///////////
|
|
|
|
static inline void
|
|
match(lzma_coder *coder, const uint32_t pos_state,
|
|
const uint32_t distance, const uint32_t len)
|
|
{
|
|
update_match(coder->state);
|
|
|
|
length(&coder->rc, &coder->match_len_encoder, pos_state, len);
|
|
coder->prev_len_encoder = &coder->match_len_encoder;
|
|
|
|
const uint32_t pos_slot = get_pos_slot(distance);
|
|
const uint32_t len_to_pos_state = get_len_to_pos_state(len);
|
|
rc_bittree(&coder->rc, coder->pos_slot_encoder[len_to_pos_state],
|
|
POS_SLOT_BITS, pos_slot);
|
|
|
|
if (pos_slot >= START_POS_MODEL_INDEX) {
|
|
const uint32_t footer_bits = (pos_slot >> 1) - 1;
|
|
const uint32_t base = (2 | (pos_slot & 1)) << footer_bits;
|
|
const uint32_t pos_reduced = distance - base;
|
|
|
|
if (pos_slot < END_POS_MODEL_INDEX) {
|
|
rc_bittree_reverse(&coder->rc,
|
|
&coder->pos_encoders[base - pos_slot - 1],
|
|
footer_bits, pos_reduced);
|
|
} else {
|
|
rc_direct(&coder->rc, pos_reduced >> ALIGN_BITS,
|
|
footer_bits - ALIGN_BITS);
|
|
rc_bittree_reverse(
|
|
&coder->rc, coder->pos_align_encoder,
|
|
ALIGN_BITS, pos_reduced & ALIGN_MASK);
|
|
++coder->align_price_count;
|
|
}
|
|
}
|
|
|
|
coder->reps[3] = coder->reps[2];
|
|
coder->reps[2] = coder->reps[1];
|
|
coder->reps[1] = coder->reps[0];
|
|
coder->reps[0] = distance;
|
|
++coder->match_price_count;
|
|
}
|
|
|
|
|
|
////////////////////
|
|
// Repeated match //
|
|
////////////////////
|
|
|
|
static inline void
|
|
rep_match(lzma_coder *coder, const uint32_t pos_state,
|
|
const uint32_t rep, const uint32_t len)
|
|
{
|
|
if (rep == 0) {
|
|
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
|
|
rc_bit(&coder->rc,
|
|
&coder->is_rep0_long[coder->state][pos_state],
|
|
len != 1);
|
|
} else {
|
|
const uint32_t distance = coder->reps[rep];
|
|
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
|
|
|
|
if (rep == 1) {
|
|
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
|
|
} else {
|
|
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
|
|
rc_bit(&coder->rc, &coder->is_rep2[coder->state],
|
|
rep - 2);
|
|
|
|
if (rep == 3)
|
|
coder->reps[3] = coder->reps[2];
|
|
|
|
coder->reps[2] = coder->reps[1];
|
|
}
|
|
|
|
coder->reps[1] = coder->reps[0];
|
|
coder->reps[0] = distance;
|
|
}
|
|
|
|
if (len == 1) {
|
|
update_short_rep(coder->state);
|
|
} else {
|
|
length(&coder->rc, &coder->rep_len_encoder, pos_state, len);
|
|
coder->prev_len_encoder = &coder->rep_len_encoder;
|
|
update_long_rep(coder->state);
|
|
}
|
|
}
|
|
|
|
|
|
//////////
|
|
// Main //
|
|
//////////
|
|
|
|
static void
|
|
encode_symbol(lzma_coder *coder, uint32_t pos, uint32_t len)
|
|
{
|
|
const uint32_t pos_state = coder->now_pos & coder->pos_mask;
|
|
|
|
if (len == 1 && pos == UINT32_MAX) {
|
|
// Literal i.e. eight-bit byte
|
|
rc_bit(&coder->rc,
|
|
&coder->is_match[coder->state][pos_state], 0);
|
|
literal(coder);
|
|
} else {
|
|
// Some type of match
|
|
rc_bit(&coder->rc,
|
|
&coder->is_match[coder->state][pos_state], 1);
|
|
|
|
if (pos < REP_DISTANCES) {
|
|
// It's a repeated match i.e. the same distance
|
|
// has been used earlier.
|
|
rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
|
|
rep_match(coder, pos_state, pos, len);
|
|
} else {
|
|
// Normal match
|
|
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
|
|
match(coder, pos_state, pos - REP_DISTANCES, len);
|
|
}
|
|
|
|
coder->previous_byte = coder->lz.buffer[
|
|
coder->lz.read_pos + len - 1
|
|
- coder->additional_offset];
|
|
}
|
|
|
|
assert(coder->additional_offset >= len);
|
|
coder->additional_offset -= len;
|
|
coder->now_pos += len;
|
|
}
|
|
|
|
|
|
static void
|
|
encode_eopm(lzma_coder *coder)
|
|
{
|
|
const uint32_t pos_state = coder->now_pos & coder->pos_mask;
|
|
rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
|
|
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
|
|
match(coder, pos_state, UINT32_MAX, MATCH_MIN_LEN);
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief LZMA encoder
|
|
*
|
|
* \return true if end of stream was reached, false otherwise.
|
|
*/
|
|
extern bool
|
|
lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
|
|
size_t *restrict out_pos, size_t out_size)
|
|
{
|
|
// Initialize the stream if no data has been encoded yet.
|
|
if (!coder->is_initialized) {
|
|
if (coder->lz.read_pos == coder->lz.read_limit) {
|
|
if (coder->lz.sequence == SEQ_RUN)
|
|
return false; // We cannot do anything.
|
|
|
|
// We are finishing (we cannot get here when flushing).
|
|
assert(coder->lz.write_pos == coder->lz.read_pos);
|
|
assert(coder->lz.sequence == SEQ_FINISH);
|
|
} else {
|
|
// Do the actual initialization.
|
|
uint32_t len;
|
|
uint32_t num_distance_pairs;
|
|
lzma_read_match_distances(coder,
|
|
&len, &num_distance_pairs);
|
|
|
|
encode_symbol(coder, UINT32_MAX, 1);
|
|
|
|
assert(coder->additional_offset == 0);
|
|
}
|
|
|
|
// Initialization is done (except if empty file).
|
|
coder->is_initialized = true;
|
|
}
|
|
|
|
// Encoding loop
|
|
while (true) {
|
|
// Encode pending bits, if any.
|
|
if (rc_encode(&coder->rc, out, out_pos, out_size))
|
|
return false;
|
|
|
|
// Check that there is some input to process.
|
|
if (coder->lz.read_pos >= coder->lz.read_limit) {
|
|
// If flushing or finishing, we must keep encoding
|
|
// until additional_offset becomes zero to make
|
|
// all the input available at output.
|
|
if (coder->lz.sequence == SEQ_RUN)
|
|
return false;
|
|
|
|
if (coder->additional_offset == 0)
|
|
break;
|
|
}
|
|
|
|
assert(coder->lz.read_pos <= coder->lz.write_pos);
|
|
|
|
#ifndef NDEBUG
|
|
if (coder->lz.sequence != SEQ_RUN) {
|
|
assert(coder->lz.read_limit == coder->lz.write_pos);
|
|
} else {
|
|
assert(coder->lz.read_limit + coder->lz.keep_size_after
|
|
== coder->lz.write_pos);
|
|
}
|
|
#endif
|
|
|
|
uint32_t pos;
|
|
uint32_t len;
|
|
|
|
// Get optimal match (repeat position and length).
|
|
// Value ranges for pos:
|
|
// - [0, REP_DISTANCES): repeated match
|
|
// - [REP_DISTANCES, UINT32_MAX): match at (pos - REP_DISTANCES)
|
|
// - UINT32_MAX: not a match but a literal
|
|
// Value ranges for len:
|
|
// - [MATCH_MIN_LEN, MATCH_MAX_LEN]
|
|
if (coder->best_compression)
|
|
lzma_get_optimum(coder, &pos, &len);
|
|
else
|
|
lzma_get_optimum_fast(coder, &pos, &len);
|
|
|
|
encode_symbol(coder, pos, len);
|
|
}
|
|
|
|
assert(!coder->longest_match_was_found);
|
|
|
|
if (coder->is_flushed) {
|
|
coder->is_flushed = false;
|
|
return true;
|
|
}
|
|
|
|
// We don't support encoding old LZMA streams without EOPM, and LZMA2
|
|
// doesn't use EOPM at LZMA level.
|
|
if (coder->write_eopm)
|
|
encode_eopm(coder);
|
|
|
|
rc_flush(&coder->rc);
|
|
|
|
if (rc_encode(&coder->rc, out, out_pos, out_size)) {
|
|
coder->is_flushed = true;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|