mirror of
https://git.tukaani.org/xz.git
synced 2024-04-04 12:36:23 +02:00
888 lines
24 KiB
C
888 lines
24 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file coder.c
|
|
/// \brief Compresses or uncompresses a file
|
|
//
|
|
// Author: Lasse Collin
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "private.h"
|
|
|
|
|
|
/// Return value type for coder_init().
|
|
enum coder_init_ret {
|
|
CODER_INIT_NORMAL,
|
|
CODER_INIT_PASSTHRU,
|
|
CODER_INIT_ERROR,
|
|
};
|
|
|
|
|
|
enum operation_mode opt_mode = MODE_COMPRESS;
|
|
enum format_type opt_format = FORMAT_AUTO;
|
|
bool opt_auto_adjust = true;
|
|
bool opt_single_stream = false;
|
|
uint64_t opt_block_size = 0;
|
|
uint64_t *opt_block_list = NULL;
|
|
|
|
|
|
/// Stream used to communicate with liblzma
|
|
static lzma_stream strm = LZMA_STREAM_INIT;
|
|
|
|
/// Filters needed for all encoding all formats, and also decoding in raw data
|
|
static lzma_filter filters[LZMA_FILTERS_MAX + 1];
|
|
|
|
/// Input and output buffers
|
|
static io_buf in_buf;
|
|
static io_buf out_buf;
|
|
|
|
/// Number of filters. Zero indicates that we are using a preset.
|
|
static uint32_t filters_count = 0;
|
|
|
|
/// Number of the preset (0-9)
|
|
static uint32_t preset_number = LZMA_PRESET_DEFAULT;
|
|
|
|
/// Integrity check type
|
|
static lzma_check check;
|
|
|
|
/// This becomes false if the --check=CHECK option is used.
|
|
static bool check_default = true;
|
|
|
|
#ifdef MYTHREAD_ENABLED
|
|
static lzma_mt mt_options = {
|
|
.flags = 0,
|
|
.timeout = 300,
|
|
.filters = filters,
|
|
};
|
|
#endif
|
|
|
|
|
|
extern void
|
|
coder_set_check(lzma_check new_check)
|
|
{
|
|
check = new_check;
|
|
check_default = false;
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
forget_filter_chain(void)
|
|
{
|
|
// Setting a preset makes us forget a possibly defined custom
|
|
// filter chain.
|
|
while (filters_count > 0) {
|
|
--filters_count;
|
|
free(filters[filters_count].options);
|
|
filters[filters_count].options = NULL;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
extern void
|
|
coder_set_preset(uint32_t new_preset)
|
|
{
|
|
preset_number &= ~LZMA_PRESET_LEVEL_MASK;
|
|
preset_number |= new_preset;
|
|
forget_filter_chain();
|
|
return;
|
|
}
|
|
|
|
|
|
extern void
|
|
coder_set_extreme(void)
|
|
{
|
|
preset_number |= LZMA_PRESET_EXTREME;
|
|
forget_filter_chain();
|
|
return;
|
|
}
|
|
|
|
|
|
extern void
|
|
coder_add_filter(lzma_vli id, void *options)
|
|
{
|
|
if (filters_count == LZMA_FILTERS_MAX)
|
|
message_fatal(_("Maximum number of filters is four"));
|
|
|
|
filters[filters_count].id = id;
|
|
filters[filters_count].options = options;
|
|
++filters_count;
|
|
|
|
// Setting a custom filter chain makes us forget the preset options.
|
|
// This makes a difference if one specifies e.g. "xz -9 --lzma2 -e"
|
|
// where the custom filter chain resets the preset level back to
|
|
// the default 6, making the example equivalent to "xz -6e".
|
|
preset_number = LZMA_PRESET_DEFAULT;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static void lzma_attribute((__noreturn__))
|
|
memlimit_too_small(uint64_t memory_usage)
|
|
{
|
|
message(V_ERROR, _("Memory usage limit is too low for the given "
|
|
"filter setup."));
|
|
message_mem_needed(V_ERROR, memory_usage);
|
|
tuklib_exit(E_ERROR, E_ERROR, false);
|
|
}
|
|
|
|
|
|
extern void
|
|
coder_set_compression_settings(void)
|
|
{
|
|
// The default check type is CRC64, but fallback to CRC32
|
|
// if CRC64 isn't supported by the copy of liblzma we are
|
|
// using. CRC32 is always supported.
|
|
if (check_default) {
|
|
check = LZMA_CHECK_CRC64;
|
|
if (!lzma_check_is_supported(check))
|
|
check = LZMA_CHECK_CRC32;
|
|
}
|
|
|
|
// Options for LZMA1 or LZMA2 in case we are using a preset.
|
|
static lzma_options_lzma opt_lzma;
|
|
|
|
if (filters_count == 0) {
|
|
// We are using a preset. This is not a good idea in raw mode
|
|
// except when playing around with things. Different versions
|
|
// of this software may use different options in presets, and
|
|
// thus make uncompressing the raw data difficult.
|
|
if (opt_format == FORMAT_RAW) {
|
|
// The message is shown only if warnings are allowed
|
|
// but the exit status isn't changed.
|
|
message(V_WARNING, _("Using a preset in raw mode "
|
|
"is discouraged."));
|
|
message(V_WARNING, _("The exact options of the "
|
|
"presets may vary between software "
|
|
"versions."));
|
|
}
|
|
|
|
// Get the preset for LZMA1 or LZMA2.
|
|
if (lzma_lzma_preset(&opt_lzma, preset_number))
|
|
message_bug();
|
|
|
|
// Use LZMA2 except with --format=lzma we use LZMA1.
|
|
filters[0].id = opt_format == FORMAT_LZMA
|
|
? LZMA_FILTER_LZMA1 : LZMA_FILTER_LZMA2;
|
|
filters[0].options = &opt_lzma;
|
|
filters_count = 1;
|
|
}
|
|
|
|
// Terminate the filter options array.
|
|
filters[filters_count].id = LZMA_VLI_UNKNOWN;
|
|
|
|
// If we are using the .lzma format, allow exactly one filter
|
|
// which has to be LZMA1.
|
|
if (opt_format == FORMAT_LZMA && (filters_count != 1
|
|
|| filters[0].id != LZMA_FILTER_LZMA1))
|
|
message_fatal(_("The .lzma format supports only "
|
|
"the LZMA1 filter"));
|
|
|
|
// If we are using the .xz format, make sure that there is no LZMA1
|
|
// filter to prevent LZMA_PROG_ERROR.
|
|
if (opt_format == FORMAT_XZ)
|
|
for (size_t i = 0; i < filters_count; ++i)
|
|
if (filters[i].id == LZMA_FILTER_LZMA1)
|
|
message_fatal(_("LZMA1 cannot be used "
|
|
"with the .xz format"));
|
|
|
|
// Print the selected filter chain.
|
|
message_filters_show(V_DEBUG, filters);
|
|
|
|
// Get the memory usage. Note that if --format=raw was used,
|
|
// we can be decompressing.
|
|
const uint64_t memory_limit = hardware_memlimit_get(opt_mode);
|
|
uint64_t memory_usage;
|
|
if (opt_mode == MODE_COMPRESS) {
|
|
#ifdef MYTHREAD_ENABLED
|
|
if (opt_format == FORMAT_XZ && hardware_threads_get() > 1) {
|
|
mt_options.threads = hardware_threads_get();
|
|
mt_options.block_size = opt_block_size;
|
|
mt_options.check = check;
|
|
memory_usage = lzma_stream_encoder_mt_memusage(
|
|
&mt_options);
|
|
if (memory_usage != UINT64_MAX)
|
|
message(V_DEBUG, _("Using up to %" PRIu32
|
|
" threads."),
|
|
mt_options.threads);
|
|
} else
|
|
#endif
|
|
{
|
|
memory_usage = lzma_raw_encoder_memusage(filters);
|
|
}
|
|
} else {
|
|
memory_usage = lzma_raw_decoder_memusage(filters);
|
|
}
|
|
|
|
if (memory_usage == UINT64_MAX)
|
|
message_fatal(_("Unsupported filter chain or filter options"));
|
|
|
|
// Print memory usage info before possible dictionary
|
|
// size auto-adjusting.
|
|
message_mem_needed(V_DEBUG, memory_usage);
|
|
if (opt_mode == MODE_COMPRESS) {
|
|
const uint64_t decmem = lzma_raw_decoder_memusage(filters);
|
|
if (decmem != UINT64_MAX)
|
|
message(V_DEBUG, _("Decompression will need "
|
|
"%s MiB of memory."), uint64_to_str(
|
|
round_up_to_mib(decmem), 0));
|
|
}
|
|
|
|
if (memory_usage <= memory_limit)
|
|
return;
|
|
|
|
// If --no-adjust was used or we didn't find LZMA1 or
|
|
// LZMA2 as the last filter, give an error immediately.
|
|
// --format=raw implies --no-adjust.
|
|
if (!opt_auto_adjust || opt_format == FORMAT_RAW)
|
|
memlimit_too_small(memory_usage);
|
|
|
|
assert(opt_mode == MODE_COMPRESS);
|
|
|
|
#ifdef MYTHREAD_ENABLED
|
|
if (opt_format == FORMAT_XZ && mt_options.threads > 1) {
|
|
// Try to reduce the number of threads before
|
|
// adjusting the compression settings down.
|
|
do {
|
|
// FIXME? The real single-threaded mode has
|
|
// lower memory usage, but it's not comparable
|
|
// because it doesn't write the size info
|
|
// into Block Headers.
|
|
if (--mt_options.threads == 0)
|
|
memlimit_too_small(memory_usage);
|
|
|
|
memory_usage = lzma_stream_encoder_mt_memusage(
|
|
&mt_options);
|
|
if (memory_usage == UINT64_MAX)
|
|
message_bug();
|
|
|
|
} while (memory_usage > memory_limit);
|
|
|
|
message(V_WARNING, _("Adjusted the number of threads "
|
|
"from %s to %s to not exceed "
|
|
"the memory usage limit of %s MiB"),
|
|
uint64_to_str(hardware_threads_get(), 0),
|
|
uint64_to_str(mt_options.threads, 1),
|
|
uint64_to_str(round_up_to_mib(
|
|
memory_limit), 2));
|
|
}
|
|
#endif
|
|
|
|
if (memory_usage <= memory_limit)
|
|
return;
|
|
|
|
// Look for the last filter if it is LZMA2 or LZMA1, so we can make
|
|
// it use less RAM. With other filters we don't know what to do.
|
|
size_t i = 0;
|
|
while (filters[i].id != LZMA_FILTER_LZMA2
|
|
&& filters[i].id != LZMA_FILTER_LZMA1) {
|
|
if (filters[i].id == LZMA_VLI_UNKNOWN)
|
|
memlimit_too_small(memory_usage);
|
|
|
|
++i;
|
|
}
|
|
|
|
// Decrease the dictionary size until we meet the memory
|
|
// usage limit. First round down to full mebibytes.
|
|
lzma_options_lzma *opt = filters[i].options;
|
|
const uint32_t orig_dict_size = opt->dict_size;
|
|
opt->dict_size &= ~((UINT32_C(1) << 20) - 1);
|
|
while (true) {
|
|
// If it is below 1 MiB, auto-adjusting failed. We could be
|
|
// more sophisticated and scale it down even more, but let's
|
|
// see if many complain about this version.
|
|
//
|
|
// FIXME: Displays the scaled memory usage instead
|
|
// of the original.
|
|
if (opt->dict_size < (UINT32_C(1) << 20))
|
|
memlimit_too_small(memory_usage);
|
|
|
|
memory_usage = lzma_raw_encoder_memusage(filters);
|
|
if (memory_usage == UINT64_MAX)
|
|
message_bug();
|
|
|
|
// Accept it if it is low enough.
|
|
if (memory_usage <= memory_limit)
|
|
break;
|
|
|
|
// Otherwise 1 MiB down and try again. I hope this
|
|
// isn't too slow method for cases where the original
|
|
// dict_size is very big.
|
|
opt->dict_size -= UINT32_C(1) << 20;
|
|
}
|
|
|
|
// Tell the user that we decreased the dictionary size.
|
|
message(V_WARNING, _("Adjusted LZMA%c dictionary size "
|
|
"from %s MiB to %s MiB to not exceed "
|
|
"the memory usage limit of %s MiB"),
|
|
filters[i].id == LZMA_FILTER_LZMA2
|
|
? '2' : '1',
|
|
uint64_to_str(orig_dict_size >> 20, 0),
|
|
uint64_to_str(opt->dict_size >> 20, 1),
|
|
uint64_to_str(round_up_to_mib(memory_limit), 2));
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/// Return true if the data in in_buf seems to be in the .xz format.
|
|
static bool
|
|
is_format_xz(void)
|
|
{
|
|
// Specify the magic as hex to be compatible with EBCDIC systems.
|
|
static const uint8_t magic[6] = { 0xFD, 0x37, 0x7A, 0x58, 0x5A, 0x00 };
|
|
return strm.avail_in >= sizeof(magic)
|
|
&& memcmp(in_buf.u8, magic, sizeof(magic)) == 0;
|
|
}
|
|
|
|
|
|
/// Return true if the data in in_buf seems to be in the .lzma format.
|
|
static bool
|
|
is_format_lzma(void)
|
|
{
|
|
// The .lzma header is 13 bytes.
|
|
if (strm.avail_in < 13)
|
|
return false;
|
|
|
|
// Decode the LZMA1 properties.
|
|
lzma_filter filter = { .id = LZMA_FILTER_LZMA1 };
|
|
if (lzma_properties_decode(&filter, NULL, in_buf.u8, 5) != LZMA_OK)
|
|
return false;
|
|
|
|
// A hack to ditch tons of false positives: We allow only dictionary
|
|
// sizes that are 2^n or 2^n + 2^(n-1) or UINT32_MAX. LZMA_Alone
|
|
// created only files with 2^n, but accepts any dictionary size.
|
|
// If someone complains, this will be reconsidered.
|
|
lzma_options_lzma *opt = filter.options;
|
|
const uint32_t dict_size = opt->dict_size;
|
|
free(opt);
|
|
|
|
if (dict_size != UINT32_MAX) {
|
|
uint32_t d = dict_size - 1;
|
|
d |= d >> 2;
|
|
d |= d >> 3;
|
|
d |= d >> 4;
|
|
d |= d >> 8;
|
|
d |= d >> 16;
|
|
++d;
|
|
if (d != dict_size || dict_size == 0)
|
|
return false;
|
|
}
|
|
|
|
// Another hack to ditch false positives: Assume that if the
|
|
// uncompressed size is known, it must be less than 256 GiB.
|
|
// Again, if someone complains, this will be reconsidered.
|
|
uint64_t uncompressed_size = 0;
|
|
for (size_t i = 0; i < 8; ++i)
|
|
uncompressed_size |= (uint64_t)(in_buf.u8[5 + i]) << (i * 8);
|
|
|
|
if (uncompressed_size != UINT64_MAX
|
|
&& uncompressed_size > (UINT64_C(1) << 38))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Detect the input file type (for now, this done only when decompressing),
|
|
/// and initialize an appropriate coder. Return value indicates if a normal
|
|
/// liblzma-based coder was initialized (CODER_INIT_NORMAL), if passthru
|
|
/// mode should be used (CODER_INIT_PASSTHRU), or if an error occurred
|
|
/// (CODER_INIT_ERROR).
|
|
static enum coder_init_ret
|
|
coder_init(file_pair *pair)
|
|
{
|
|
lzma_ret ret = LZMA_PROG_ERROR;
|
|
|
|
if (opt_mode == MODE_COMPRESS) {
|
|
switch (opt_format) {
|
|
case FORMAT_AUTO:
|
|
// args.c ensures this.
|
|
assert(0);
|
|
break;
|
|
|
|
case FORMAT_XZ:
|
|
#ifdef MYTHREAD_ENABLED
|
|
if (hardware_threads_get() > 1)
|
|
ret = lzma_stream_encoder_mt(
|
|
&strm, &mt_options);
|
|
else
|
|
#endif
|
|
ret = lzma_stream_encoder(
|
|
&strm, filters, check);
|
|
break;
|
|
|
|
case FORMAT_LZMA:
|
|
ret = lzma_alone_encoder(&strm, filters[0].options);
|
|
break;
|
|
|
|
case FORMAT_RAW:
|
|
ret = lzma_raw_encoder(&strm, filters);
|
|
break;
|
|
}
|
|
} else {
|
|
uint32_t flags = LZMA_TELL_UNSUPPORTED_CHECK;
|
|
if (!opt_single_stream)
|
|
flags |= LZMA_CONCATENATED;
|
|
|
|
// We abuse FORMAT_AUTO to indicate unknown file format,
|
|
// for which we may consider passthru mode.
|
|
enum format_type init_format = FORMAT_AUTO;
|
|
|
|
switch (opt_format) {
|
|
case FORMAT_AUTO:
|
|
if (is_format_xz())
|
|
init_format = FORMAT_XZ;
|
|
else if (is_format_lzma())
|
|
init_format = FORMAT_LZMA;
|
|
break;
|
|
|
|
case FORMAT_XZ:
|
|
if (is_format_xz())
|
|
init_format = FORMAT_XZ;
|
|
break;
|
|
|
|
case FORMAT_LZMA:
|
|
if (is_format_lzma())
|
|
init_format = FORMAT_LZMA;
|
|
break;
|
|
|
|
case FORMAT_RAW:
|
|
init_format = FORMAT_RAW;
|
|
break;
|
|
}
|
|
|
|
switch (init_format) {
|
|
case FORMAT_AUTO:
|
|
// Unknown file format. If --decompress --stdout
|
|
// --force have been given, then we copy the input
|
|
// as is to stdout. Checking for MODE_DECOMPRESS
|
|
// is needed, because we don't want to do use
|
|
// passthru mode with --test.
|
|
if (opt_mode == MODE_DECOMPRESS
|
|
&& opt_stdout && opt_force)
|
|
return CODER_INIT_PASSTHRU;
|
|
|
|
ret = LZMA_FORMAT_ERROR;
|
|
break;
|
|
|
|
case FORMAT_XZ:
|
|
ret = lzma_stream_decoder(&strm,
|
|
hardware_memlimit_get(
|
|
MODE_DECOMPRESS), flags);
|
|
break;
|
|
|
|
case FORMAT_LZMA:
|
|
ret = lzma_alone_decoder(&strm,
|
|
hardware_memlimit_get(
|
|
MODE_DECOMPRESS));
|
|
break;
|
|
|
|
case FORMAT_RAW:
|
|
// Memory usage has already been checked in
|
|
// coder_set_compression_settings().
|
|
ret = lzma_raw_decoder(&strm, filters);
|
|
break;
|
|
}
|
|
|
|
// Try to decode the headers. This will catch too low
|
|
// memory usage limit in case it happens in the first
|
|
// Block of the first Stream, which is where it very
|
|
// probably will happen if it is going to happen.
|
|
if (ret == LZMA_OK && init_format != FORMAT_RAW) {
|
|
strm.next_out = NULL;
|
|
strm.avail_out = 0;
|
|
ret = lzma_code(&strm, LZMA_RUN);
|
|
}
|
|
}
|
|
|
|
if (ret != LZMA_OK) {
|
|
message_error("%s: %s", pair->src_name, message_strm(ret));
|
|
if (ret == LZMA_MEMLIMIT_ERROR)
|
|
message_mem_needed(V_ERROR, lzma_memusage(&strm));
|
|
|
|
return CODER_INIT_ERROR;
|
|
}
|
|
|
|
return CODER_INIT_NORMAL;
|
|
}
|
|
|
|
|
|
/// Resolve conflicts between opt_block_size and opt_block_list in single
|
|
/// threaded mode. We want to default to opt_block_list, except when it is
|
|
/// larger than opt_block_size. If this is the case for the current Block
|
|
/// at *list_pos, then we break into smaller Blocks. Otherwise advance
|
|
/// to the next Block in opt_block_list, and break apart if needed.
|
|
static void
|
|
split_block(uint64_t *block_remaining,
|
|
uint64_t *next_block_remaining,
|
|
uint64_t *list_pos)
|
|
{
|
|
if (*next_block_remaining > 0) {
|
|
// The Block at *list_pos has previously been split up.
|
|
assert(hardware_threads_get() == 1);
|
|
assert(opt_block_size > 0);
|
|
assert(opt_block_list != NULL);
|
|
|
|
if (*next_block_remaining > opt_block_size) {
|
|
// We have to split the current Block at *list_pos
|
|
// into another opt_block_size length Block.
|
|
*block_remaining = opt_block_size;
|
|
} else {
|
|
// This is the last remaining split Block for the
|
|
// Block at *list_pos.
|
|
*block_remaining = *next_block_remaining;
|
|
}
|
|
|
|
*next_block_remaining -= *block_remaining;
|
|
|
|
} else {
|
|
// The Block at *list_pos has been finished. Go to the next
|
|
// entry in the list. If the end of the list has been reached,
|
|
// reuse the size of the last Block.
|
|
if (opt_block_list[*list_pos + 1] != 0)
|
|
++*list_pos;
|
|
|
|
*block_remaining = opt_block_list[*list_pos];
|
|
|
|
// If in single-threaded mode, split up the Block if needed.
|
|
// This is not needed in multi-threaded mode because liblzma
|
|
// will do this due to how threaded encoding works.
|
|
if (hardware_threads_get() == 1 && opt_block_size > 0
|
|
&& *block_remaining > opt_block_size) {
|
|
*next_block_remaining
|
|
= *block_remaining - opt_block_size;
|
|
*block_remaining = opt_block_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Compress or decompress using liblzma.
|
|
static bool
|
|
coder_normal(file_pair *pair)
|
|
{
|
|
// Encoder needs to know when we have given all the input to it.
|
|
// The decoders need to know it too when we are using
|
|
// LZMA_CONCATENATED. We need to check for src_eof here, because
|
|
// the first input chunk has been already read if decompressing,
|
|
// and that may have been the only chunk we will read.
|
|
lzma_action action = pair->src_eof ? LZMA_FINISH : LZMA_RUN;
|
|
|
|
lzma_ret ret;
|
|
|
|
// Assume that something goes wrong.
|
|
bool success = false;
|
|
|
|
// block_remaining indicates how many input bytes to encode before
|
|
// finishing the current .xz Block. The Block size is set with
|
|
// --block-size=SIZE and --block-list. They have an effect only when
|
|
// compressing to the .xz format. If block_remaining == UINT64_MAX,
|
|
// only a single block is created.
|
|
uint64_t block_remaining = UINT64_MAX;
|
|
|
|
// next_block_remining for when we are in single-threaded mode and
|
|
// the Block in --block-list is larger than the --block-size=SIZE.
|
|
uint64_t next_block_remaining = 0;
|
|
|
|
// Position in opt_block_list. Unused if --block-list wasn't used.
|
|
size_t list_pos = 0;
|
|
|
|
// Handle --block-size for single-threaded mode and the first step
|
|
// of --block-list.
|
|
if (opt_mode == MODE_COMPRESS && opt_format == FORMAT_XZ) {
|
|
// --block-size doesn't do anything here in threaded mode,
|
|
// because the threaded encoder will take care of splitting
|
|
// to fixed-sized Blocks.
|
|
if (hardware_threads_get() == 1 && opt_block_size > 0)
|
|
block_remaining = opt_block_size;
|
|
|
|
// If --block-list was used, start with the first size.
|
|
//
|
|
// For threaded case, --block-size specifies how big Blocks
|
|
// the encoder needs to be prepared to create at maximum
|
|
// and --block-list will simultaneously cause new Blocks
|
|
// to be started at specified intervals. To keep things
|
|
// logical, the same is done in single-threaded mode. The
|
|
// output is still not identical because in single-threaded
|
|
// mode the size info isn't written into Block Headers.
|
|
if (opt_block_list != NULL) {
|
|
if (block_remaining < opt_block_list[list_pos]) {
|
|
assert(hardware_threads_get() == 1);
|
|
next_block_remaining = opt_block_list[list_pos]
|
|
- block_remaining;
|
|
} else {
|
|
block_remaining = opt_block_list[list_pos];
|
|
}
|
|
}
|
|
}
|
|
|
|
strm.next_out = out_buf.u8;
|
|
strm.avail_out = IO_BUFFER_SIZE;
|
|
|
|
while (!user_abort) {
|
|
// Fill the input buffer if it is empty and we aren't
|
|
// flushing or finishing.
|
|
if (strm.avail_in == 0 && action == LZMA_RUN) {
|
|
strm.next_in = in_buf.u8;
|
|
strm.avail_in = io_read(pair, &in_buf,
|
|
my_min(block_remaining,
|
|
IO_BUFFER_SIZE));
|
|
|
|
if (strm.avail_in == SIZE_MAX)
|
|
break;
|
|
|
|
if (pair->src_eof) {
|
|
action = LZMA_FINISH;
|
|
|
|
} else if (block_remaining != UINT64_MAX) {
|
|
// Start a new Block after every
|
|
// opt_block_size bytes of input.
|
|
block_remaining -= strm.avail_in;
|
|
if (block_remaining == 0)
|
|
action = LZMA_FULL_BARRIER;
|
|
}
|
|
|
|
if (action == LZMA_RUN && flush_needed)
|
|
action = LZMA_SYNC_FLUSH;
|
|
}
|
|
|
|
// Let liblzma do the actual work.
|
|
ret = lzma_code(&strm, action);
|
|
|
|
// Write out if the output buffer became full.
|
|
if (strm.avail_out == 0) {
|
|
if (opt_mode != MODE_TEST && io_write(pair, &out_buf,
|
|
IO_BUFFER_SIZE - strm.avail_out))
|
|
break;
|
|
|
|
strm.next_out = out_buf.u8;
|
|
strm.avail_out = IO_BUFFER_SIZE;
|
|
}
|
|
|
|
if (ret == LZMA_STREAM_END && (action == LZMA_SYNC_FLUSH
|
|
|| action == LZMA_FULL_BARRIER)) {
|
|
if (action == LZMA_SYNC_FLUSH) {
|
|
// Flushing completed. Write the pending data
|
|
// out immediatelly so that the reading side
|
|
// can decompress everything compressed so far.
|
|
if (io_write(pair, &out_buf, IO_BUFFER_SIZE
|
|
- strm.avail_out))
|
|
break;
|
|
|
|
strm.next_out = out_buf.u8;
|
|
strm.avail_out = IO_BUFFER_SIZE;
|
|
|
|
// Set the time of the most recent flushing.
|
|
mytime_set_flush_time();
|
|
} else {
|
|
// Start a new Block after LZMA_FULL_BARRIER.
|
|
if (opt_block_list == NULL) {
|
|
assert(hardware_threads_get() == 1);
|
|
assert(opt_block_size > 0);
|
|
block_remaining = opt_block_size;
|
|
} else {
|
|
split_block(&block_remaining,
|
|
&next_block_remaining,
|
|
&list_pos);
|
|
}
|
|
}
|
|
|
|
// Start a new Block after LZMA_FULL_FLUSH or continue
|
|
// the same block after LZMA_SYNC_FLUSH.
|
|
action = LZMA_RUN;
|
|
|
|
} else if (ret != LZMA_OK) {
|
|
// Determine if the return value indicates that we
|
|
// won't continue coding.
|
|
const bool stop = ret != LZMA_NO_CHECK
|
|
&& ret != LZMA_UNSUPPORTED_CHECK;
|
|
|
|
if (stop) {
|
|
// Write the remaining bytes even if something
|
|
// went wrong, because that way the user gets
|
|
// as much data as possible, which can be good
|
|
// when trying to get at least some useful
|
|
// data out of damaged files.
|
|
if (opt_mode != MODE_TEST && io_write(pair,
|
|
&out_buf, IO_BUFFER_SIZE
|
|
- strm.avail_out))
|
|
break;
|
|
}
|
|
|
|
if (ret == LZMA_STREAM_END) {
|
|
if (opt_single_stream) {
|
|
io_fix_src_pos(pair, strm.avail_in);
|
|
success = true;
|
|
break;
|
|
}
|
|
|
|
// Check that there is no trailing garbage.
|
|
// This is needed for LZMA_Alone and raw
|
|
// streams.
|
|
if (strm.avail_in == 0 && !pair->src_eof) {
|
|
// Try reading one more byte.
|
|
// Hopefully we don't get any more
|
|
// input, and thus pair->src_eof
|
|
// becomes true.
|
|
strm.avail_in = io_read(
|
|
pair, &in_buf, 1);
|
|
if (strm.avail_in == SIZE_MAX)
|
|
break;
|
|
|
|
assert(strm.avail_in == 0
|
|
|| strm.avail_in == 1);
|
|
}
|
|
|
|
if (strm.avail_in == 0) {
|
|
assert(pair->src_eof);
|
|
success = true;
|
|
break;
|
|
}
|
|
|
|
// We hadn't reached the end of the file.
|
|
ret = LZMA_DATA_ERROR;
|
|
assert(stop);
|
|
}
|
|
|
|
// If we get here and stop is true, something went
|
|
// wrong and we print an error. Otherwise it's just
|
|
// a warning and coding can continue.
|
|
if (stop) {
|
|
message_error("%s: %s", pair->src_name,
|
|
message_strm(ret));
|
|
} else {
|
|
message_warning("%s: %s", pair->src_name,
|
|
message_strm(ret));
|
|
|
|
// When compressing, all possible errors set
|
|
// stop to true.
|
|
assert(opt_mode != MODE_COMPRESS);
|
|
}
|
|
|
|
if (ret == LZMA_MEMLIMIT_ERROR) {
|
|
// Display how much memory it would have
|
|
// actually needed.
|
|
message_mem_needed(V_ERROR,
|
|
lzma_memusage(&strm));
|
|
}
|
|
|
|
if (stop)
|
|
break;
|
|
}
|
|
|
|
// Show progress information under certain conditions.
|
|
message_progress_update();
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
|
|
/// Copy from input file to output file without processing the data in any
|
|
/// way. This is used only when trying to decompress unrecognized files
|
|
/// with --decompress --stdout --force, so the output is always stdout.
|
|
static bool
|
|
coder_passthru(file_pair *pair)
|
|
{
|
|
while (strm.avail_in != 0) {
|
|
if (user_abort)
|
|
return false;
|
|
|
|
if (io_write(pair, &in_buf, strm.avail_in))
|
|
return false;
|
|
|
|
strm.total_in += strm.avail_in;
|
|
strm.total_out = strm.total_in;
|
|
message_progress_update();
|
|
|
|
strm.avail_in = io_read(pair, &in_buf, IO_BUFFER_SIZE);
|
|
if (strm.avail_in == SIZE_MAX)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
extern void
|
|
coder_run(const char *filename)
|
|
{
|
|
// Set and possibly print the filename for the progress message.
|
|
message_filename(filename);
|
|
|
|
// Try to open the input file.
|
|
file_pair *pair = io_open_src(filename);
|
|
if (pair == NULL)
|
|
return;
|
|
|
|
// Assume that something goes wrong.
|
|
bool success = false;
|
|
|
|
if (opt_mode == MODE_COMPRESS) {
|
|
strm.next_in = NULL;
|
|
strm.avail_in = 0;
|
|
} else {
|
|
// Read the first chunk of input data. This is needed
|
|
// to detect the input file type.
|
|
strm.next_in = in_buf.u8;
|
|
strm.avail_in = io_read(pair, &in_buf, IO_BUFFER_SIZE);
|
|
}
|
|
|
|
if (strm.avail_in != SIZE_MAX) {
|
|
// Initialize the coder. This will detect the file format
|
|
// and, in decompression or testing mode, check the memory
|
|
// usage of the first Block too. This way we don't try to
|
|
// open the destination file if we see that coding wouldn't
|
|
// work at all anyway. This also avoids deleting the old
|
|
// "target" file if --force was used.
|
|
const enum coder_init_ret init_ret = coder_init(pair);
|
|
|
|
if (init_ret != CODER_INIT_ERROR && !user_abort) {
|
|
// Don't open the destination file when --test
|
|
// is used.
|
|
if (opt_mode == MODE_TEST || !io_open_dest(pair)) {
|
|
// Remember the current time. It is needed
|
|
// for progress indicator and for timed
|
|
// flushing.
|
|
mytime_set_start_time();
|
|
|
|
// Initialize the progress indicator.
|
|
const uint64_t in_size
|
|
= pair->src_st.st_size <= 0
|
|
? 0 : pair->src_st.st_size;
|
|
message_progress_start(&strm, in_size);
|
|
|
|
// Do the actual coding or passthru.
|
|
if (init_ret == CODER_INIT_NORMAL)
|
|
success = coder_normal(pair);
|
|
else
|
|
success = coder_passthru(pair);
|
|
|
|
message_progress_end(success);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Close the file pair. It needs to know if coding was successful to
|
|
// know if the source or target file should be unlinked.
|
|
io_close(pair, success);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
#ifndef NDEBUG
|
|
extern void
|
|
coder_free(void)
|
|
{
|
|
lzma_end(&strm);
|
|
return;
|
|
}
|
|
#endif
|