mirror of
https://git.tukaani.org/xz.git
synced 2024-04-04 12:36:23 +02:00
3d93b63549
Thanks to Jim Meyering.
288 lines
6.5 KiB
C
288 lines
6.5 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file util.c
|
|
/// \brief Miscellaneous utility functions
|
|
//
|
|
// Author: Lasse Collin
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "private.h"
|
|
#include <stdarg.h>
|
|
|
|
|
|
/// Buffers for uint64_to_str() and uint64_to_nicestr()
|
|
static char bufs[4][128];
|
|
|
|
/// Thousand separator support in uint64_to_str() and uint64_to_nicestr()
|
|
static enum { UNKNOWN, WORKS, BROKEN } thousand = UNKNOWN;
|
|
|
|
|
|
extern void *
|
|
xrealloc(void *ptr, size_t size)
|
|
{
|
|
assert(size > 0);
|
|
|
|
// Save ptr so that we can free it if realloc fails.
|
|
// The point is that message_fatal ends up calling stdio functions
|
|
// which in some libc implementations might allocate memory from
|
|
// the heap. Freeing ptr improves the chances that there's free
|
|
// memory for stdio functions if they need it.
|
|
void *p = ptr;
|
|
ptr = realloc(ptr, size);
|
|
|
|
if (ptr == NULL) {
|
|
const int saved_errno = errno;
|
|
free(p);
|
|
message_fatal("%s", strerror(saved_errno));
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
|
|
extern char *
|
|
xstrdup(const char *src)
|
|
{
|
|
assert(src != NULL);
|
|
const size_t size = strlen(src) + 1;
|
|
char *dest = xmalloc(size);
|
|
return memcpy(dest, src, size);
|
|
}
|
|
|
|
|
|
extern uint64_t
|
|
str_to_uint64(const char *name, const char *value, uint64_t min, uint64_t max)
|
|
{
|
|
uint64_t result = 0;
|
|
|
|
// Skip blanks.
|
|
while (*value == ' ' || *value == '\t')
|
|
++value;
|
|
|
|
// Accept special value "max". Supporting "min" doesn't seem useful.
|
|
if (strcmp(value, "max") == 0)
|
|
return max;
|
|
|
|
if (*value < '0' || *value > '9')
|
|
message_fatal(_("%s: Value is not a non-negative "
|
|
"decimal integer"), value);
|
|
|
|
do {
|
|
// Don't overflow.
|
|
if (result > UINT64_MAX / 10)
|
|
goto error;
|
|
|
|
result *= 10;
|
|
|
|
// Another overflow check
|
|
const uint32_t add = *value - '0';
|
|
if (UINT64_MAX - add < result)
|
|
goto error;
|
|
|
|
result += add;
|
|
++value;
|
|
} while (*value >= '0' && *value <= '9');
|
|
|
|
if (*value != '\0') {
|
|
// Look for suffix. Originally this supported both base-2
|
|
// and base-10, but since there seems to be little need
|
|
// for base-10 in this program, treat everything as base-2
|
|
// and also be more relaxed about the case of the first
|
|
// letter of the suffix.
|
|
uint64_t multiplier = 0;
|
|
if (*value == 'k' || *value == 'K')
|
|
multiplier = UINT64_C(1) << 10;
|
|
else if (*value == 'm' || *value == 'M')
|
|
multiplier = UINT64_C(1) << 20;
|
|
else if (*value == 'g' || *value == 'G')
|
|
multiplier = UINT64_C(1) << 30;
|
|
|
|
++value;
|
|
|
|
// Allow also e.g. Ki, KiB, and KB.
|
|
if (*value != '\0' && strcmp(value, "i") != 0
|
|
&& strcmp(value, "iB") != 0
|
|
&& strcmp(value, "B") != 0)
|
|
multiplier = 0;
|
|
|
|
if (multiplier == 0) {
|
|
message(V_ERROR, _("%s: Invalid multiplier suffix"),
|
|
value - 1);
|
|
message_fatal(_("Valid suffixes are `KiB' (2^10), "
|
|
"`MiB' (2^20), and `GiB' (2^30)."));
|
|
}
|
|
|
|
// Don't overflow here either.
|
|
if (result > UINT64_MAX / multiplier)
|
|
goto error;
|
|
|
|
result *= multiplier;
|
|
}
|
|
|
|
if (result < min || result > max)
|
|
goto error;
|
|
|
|
return result;
|
|
|
|
error:
|
|
message_fatal(_("Value of the option `%s' must be in the range "
|
|
"[%" PRIu64 ", %" PRIu64 "]"),
|
|
name, min, max);
|
|
}
|
|
|
|
|
|
extern uint64_t
|
|
round_up_to_mib(uint64_t n)
|
|
{
|
|
return (n >> 20) + ((n & ((UINT32_C(1) << 20) - 1)) != 0);
|
|
}
|
|
|
|
|
|
/// Check if thousand separator is supported. Run-time checking is easiest,
|
|
/// because it seems to be sometimes lacking even on POSIXish system.
|
|
static void
|
|
check_thousand_sep(uint32_t slot)
|
|
{
|
|
if (thousand == UNKNOWN) {
|
|
bufs[slot][0] = '\0';
|
|
snprintf(bufs[slot], sizeof(bufs[slot]), "%'u", 1U);
|
|
thousand = bufs[slot][0] == '1' ? WORKS : BROKEN;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
extern const char *
|
|
uint64_to_str(uint64_t value, uint32_t slot)
|
|
{
|
|
assert(slot < ARRAY_SIZE(bufs));
|
|
|
|
check_thousand_sep(slot);
|
|
|
|
if (thousand == WORKS)
|
|
snprintf(bufs[slot], sizeof(bufs[slot]), "%'" PRIu64, value);
|
|
else
|
|
snprintf(bufs[slot], sizeof(bufs[slot]), "%" PRIu64, value);
|
|
|
|
return bufs[slot];
|
|
}
|
|
|
|
|
|
extern const char *
|
|
uint64_to_nicestr(uint64_t value, enum nicestr_unit unit_min,
|
|
enum nicestr_unit unit_max, bool always_also_bytes,
|
|
uint32_t slot)
|
|
{
|
|
assert(unit_min <= unit_max);
|
|
assert(unit_max <= NICESTR_TIB);
|
|
assert(slot < ARRAY_SIZE(bufs));
|
|
|
|
check_thousand_sep(slot);
|
|
|
|
enum nicestr_unit unit = NICESTR_B;
|
|
char *pos = bufs[slot];
|
|
size_t left = sizeof(bufs[slot]);
|
|
|
|
if ((unit_min == NICESTR_B && value < 10000)
|
|
|| unit_max == NICESTR_B) {
|
|
// The value is shown as bytes.
|
|
if (thousand == WORKS)
|
|
my_snprintf(&pos, &left, "%'u", (unsigned int)value);
|
|
else
|
|
my_snprintf(&pos, &left, "%u", (unsigned int)value);
|
|
} else {
|
|
// Scale the value to a nicer unit. Unless unit_min and
|
|
// unit_max limit us, we will show at most five significant
|
|
// digits with one decimal place.
|
|
double d = (double)(value);
|
|
do {
|
|
d /= 1024.0;
|
|
++unit;
|
|
} while (unit < unit_min || (d > 9999.9 && unit < unit_max));
|
|
|
|
if (thousand == WORKS)
|
|
my_snprintf(&pos, &left, "%'.1f", d);
|
|
else
|
|
my_snprintf(&pos, &left, "%.1f", d);
|
|
}
|
|
|
|
static const char suffix[5][4] = { "B", "KiB", "MiB", "GiB", "TiB" };
|
|
my_snprintf(&pos, &left, " %s", suffix[unit]);
|
|
|
|
if (always_also_bytes && value >= 10000) {
|
|
if (thousand == WORKS)
|
|
snprintf(pos, left, " (%'" PRIu64 " B)", value);
|
|
else
|
|
snprintf(pos, left, " (%" PRIu64 " B)", value);
|
|
}
|
|
|
|
return bufs[slot];
|
|
}
|
|
|
|
|
|
extern void
|
|
my_snprintf(char **pos, size_t *left, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
const int len = vsnprintf(*pos, *left, fmt, ap);
|
|
va_end(ap);
|
|
|
|
// If an error occurred, we want the caller to think that the whole
|
|
// buffer was used. This way no more data will be written to the
|
|
// buffer. We don't need better error handling here, although it
|
|
// is possible that the result looks garbage on the terminal if
|
|
// e.g. an UTF-8 character gets split. That shouldn't (easily)
|
|
// happen though, because the buffers used have some extra room.
|
|
if (len < 0 || (size_t)(len) >= *left) {
|
|
*left = 0;
|
|
} else {
|
|
*pos += len;
|
|
*left -= len;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
extern bool
|
|
is_empty_filename(const char *filename)
|
|
{
|
|
if (filename[0] == '\0') {
|
|
message_error(_("Empty filename, skipping"));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
extern bool
|
|
is_tty_stdin(void)
|
|
{
|
|
const bool ret = isatty(STDIN_FILENO);
|
|
|
|
if (ret)
|
|
message_error(_("Compressed data cannot be read from "
|
|
"a terminal"));
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
extern bool
|
|
is_tty_stdout(void)
|
|
{
|
|
const bool ret = isatty(STDOUT_FILENO);
|
|
|
|
if (ret)
|
|
message_error(_("Compressed data cannot be written to "
|
|
"a terminal"));
|
|
|
|
return ret;
|
|
}
|