1
0
Fork 0
mirror of https://git.tukaani.org/xz.git synced 2024-04-04 12:36:23 +02:00
xz-archive/src/xz/util.c
Lasse Collin 8b46ae8cde xz: Refactor to remove is_empty_filename().
Long ago it was used in list.c too but nowadays it's needed
only in io_open_src() so it's nicer to avoid a separate function.
2022-10-25 18:30:55 +03:00

286 lines
6.8 KiB
C

///////////////////////////////////////////////////////////////////////////////
//
/// \file util.c
/// \brief Miscellaneous utility functions
//
// Author: Lasse Collin
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "private.h"
#include <stdarg.h>
/// Buffers for uint64_to_str() and uint64_to_nicestr()
static char bufs[4][128];
/// Thousand separator support in uint64_to_str() and uint64_to_nicestr()
static enum { UNKNOWN, WORKS, BROKEN } thousand = UNKNOWN;
extern void *
xrealloc(void *ptr, size_t size)
{
assert(size > 0);
// Save ptr so that we can free it if realloc fails.
// The point is that message_fatal ends up calling stdio functions
// which in some libc implementations might allocate memory from
// the heap. Freeing ptr improves the chances that there's free
// memory for stdio functions if they need it.
void *p = ptr;
ptr = realloc(ptr, size);
if (ptr == NULL) {
const int saved_errno = errno;
free(p);
message_fatal("%s", strerror(saved_errno));
}
return ptr;
}
extern char *
xstrdup(const char *src)
{
assert(src != NULL);
const size_t size = strlen(src) + 1;
char *dest = xmalloc(size);
return memcpy(dest, src, size);
}
extern uint64_t
str_to_uint64(const char *name, const char *value, uint64_t min, uint64_t max)
{
uint64_t result = 0;
// Skip blanks.
while (*value == ' ' || *value == '\t')
++value;
// Accept special value "max". Supporting "min" doesn't seem useful.
if (strcmp(value, "max") == 0)
return max;
if (*value < '0' || *value > '9')
message_fatal(_("%s: Value is not a non-negative "
"decimal integer"), value);
do {
// Don't overflow.
if (result > UINT64_MAX / 10)
goto error;
result *= 10;
// Another overflow check
const uint32_t add = (uint32_t)(*value - '0');
if (UINT64_MAX - add < result)
goto error;
result += add;
++value;
} while (*value >= '0' && *value <= '9');
if (*value != '\0') {
// Look for suffix. Originally this supported both base-2
// and base-10, but since there seems to be little need
// for base-10 in this program, treat everything as base-2
// and also be more relaxed about the case of the first
// letter of the suffix.
uint64_t multiplier = 0;
if (*value == 'k' || *value == 'K')
multiplier = UINT64_C(1) << 10;
else if (*value == 'm' || *value == 'M')
multiplier = UINT64_C(1) << 20;
else if (*value == 'g' || *value == 'G')
multiplier = UINT64_C(1) << 30;
++value;
// Allow also e.g. Ki, KiB, and KB.
if (*value != '\0' && strcmp(value, "i") != 0
&& strcmp(value, "iB") != 0
&& strcmp(value, "B") != 0)
multiplier = 0;
if (multiplier == 0) {
message(V_ERROR, _("%s: Invalid multiplier suffix"),
value - 1);
message_fatal(_("Valid suffixes are `KiB' (2^10), "
"`MiB' (2^20), and `GiB' (2^30)."));
}
// Don't overflow here either.
if (result > UINT64_MAX / multiplier)
goto error;
result *= multiplier;
}
if (result < min || result > max)
goto error;
return result;
error:
message_fatal(_("Value of the option `%s' must be in the range "
"[%" PRIu64 ", %" PRIu64 "]"),
name, min, max);
}
extern uint64_t
round_up_to_mib(uint64_t n)
{
return (n >> 20) + ((n & ((UINT32_C(1) << 20) - 1)) != 0);
}
/// Check if thousands separator is supported. Run-time checking is easiest
/// because it seems to be sometimes lacking even on a POSIXish system.
/// Note that trying to use thousands separators when snprintf() doesn't
/// support them results in undefined behavior. This just has happened to
/// work well enough in practice.
///
/// DJGPP 2.05 added support for thousands separators but it's broken
/// at least under WinXP with Finnish locale that uses a non-breaking space
/// as the thousands separator. Workaround by disabling thousands separators
/// for DJGPP builds.
static void
check_thousand_sep(uint32_t slot)
{
if (thousand == UNKNOWN) {
bufs[slot][0] = '\0';
#ifndef __DJGPP__
snprintf(bufs[slot], sizeof(bufs[slot]), "%'u", 1U);
#endif
thousand = bufs[slot][0] == '1' ? WORKS : BROKEN;
}
return;
}
extern const char *
uint64_to_str(uint64_t value, uint32_t slot)
{
assert(slot < ARRAY_SIZE(bufs));
check_thousand_sep(slot);
if (thousand == WORKS)
snprintf(bufs[slot], sizeof(bufs[slot]), "%'" PRIu64, value);
else
snprintf(bufs[slot], sizeof(bufs[slot]), "%" PRIu64, value);
return bufs[slot];
}
extern const char *
uint64_to_nicestr(uint64_t value, enum nicestr_unit unit_min,
enum nicestr_unit unit_max, bool always_also_bytes,
uint32_t slot)
{
assert(unit_min <= unit_max);
assert(unit_max <= NICESTR_TIB);
assert(slot < ARRAY_SIZE(bufs));
check_thousand_sep(slot);
enum nicestr_unit unit = NICESTR_B;
char *pos = bufs[slot];
size_t left = sizeof(bufs[slot]);
if ((unit_min == NICESTR_B && value < 10000)
|| unit_max == NICESTR_B) {
// The value is shown as bytes.
if (thousand == WORKS)
my_snprintf(&pos, &left, "%'u", (unsigned int)value);
else
my_snprintf(&pos, &left, "%u", (unsigned int)value);
} else {
// Scale the value to a nicer unit. Unless unit_min and
// unit_max limit us, we will show at most five significant
// digits with one decimal place.
double d = (double)(value);
do {
d /= 1024.0;
++unit;
} while (unit < unit_min || (d > 9999.9 && unit < unit_max));
if (thousand == WORKS)
my_snprintf(&pos, &left, "%'.1f", d);
else
my_snprintf(&pos, &left, "%.1f", d);
}
static const char suffix[5][4] = { "B", "KiB", "MiB", "GiB", "TiB" };
my_snprintf(&pos, &left, " %s", suffix[unit]);
if (always_also_bytes && value >= 10000) {
if (thousand == WORKS)
snprintf(pos, left, " (%'" PRIu64 " B)", value);
else
snprintf(pos, left, " (%" PRIu64 " B)", value);
}
return bufs[slot];
}
extern void
my_snprintf(char **pos, size_t *left, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
const int len = vsnprintf(*pos, *left, fmt, ap);
va_end(ap);
// If an error occurred, we want the caller to think that the whole
// buffer was used. This way no more data will be written to the
// buffer. We don't need better error handling here, although it
// is possible that the result looks garbage on the terminal if
// e.g. an UTF-8 character gets split. That shouldn't (easily)
// happen though, because the buffers used have some extra room.
if (len < 0 || (size_t)(len) >= *left) {
*left = 0;
} else {
*pos += len;
*left -= (size_t)(len);
}
return;
}
extern bool
is_tty_stdin(void)
{
const bool ret = isatty(STDIN_FILENO);
if (ret)
message_error(_("Compressed data cannot be read from "
"a terminal"));
return ret;
}
extern bool
is_tty_stdout(void)
{
const bool ret = isatty(STDOUT_FILENO);
if (ret)
message_error(_("Compressed data cannot be written to "
"a terminal"));
return ret;
}