1
0
Fork 0
mirror of https://git.tukaani.org/xz.git synced 2024-04-04 12:36:23 +02:00
xz-archive/src/liblzma/lzma/lzma2_encoder.c
Lasse Collin 02ddf09bc3 Put the interesting parts of XZ Utils into the public domain.
Some minor documentation cleanups were made at the same time.
2009-04-13 11:27:40 +03:00

384 lines
9.7 KiB
C

///////////////////////////////////////////////////////////////////////////////
//
/// \file lzma2_encoder.c
/// \brief LZMA2 encoder
///
// Authors: Igor Pavlov
// Lasse Collin
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "lz_encoder.h"
#include "lzma_encoder.h"
#include "fastpos.h"
#include "lzma2_encoder.h"
struct lzma_coder_s {
enum {
SEQ_INIT,
SEQ_LZMA_ENCODE,
SEQ_LZMA_COPY,
SEQ_UNCOMPRESSED_HEADER,
SEQ_UNCOMPRESSED_COPY,
} sequence;
/// LZMA encoder
lzma_coder *lzma;
/// If this is not NULL, we will check new options from this
/// structure when starting a new chunk.
const lzma_options_lzma *opt_new;
/// LZMA options currently in use.
lzma_options_lzma opt_cur;
bool need_properties;
bool need_state_reset;
bool need_dictionary_reset;
/// Uncompressed size of a chunk
size_t uncompressed_size;
/// Compressed size of a chunk (excluding headers); this is also used
/// to indicate the end of buf[] in SEQ_LZMA_COPY.
size_t compressed_size;
/// Read position in buf[]
size_t buf_pos;
/// Buffer to hold the chunk header and LZMA compressed data
uint8_t buf[LZMA2_HEADER_MAX + LZMA2_CHUNK_MAX];
};
static void
lzma2_header_lzma(lzma_coder *coder)
{
assert(coder->uncompressed_size > 0);
assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX);
assert(coder->compressed_size > 0);
assert(coder->compressed_size <= LZMA2_CHUNK_MAX);
size_t pos;
if (coder->need_properties) {
pos = 0;
if (coder->need_dictionary_reset)
coder->buf[pos] = 0x80 + (3 << 5);
else
coder->buf[pos] = 0x80 + (2 << 5);
} else {
pos = 1;
if (coder->need_state_reset)
coder->buf[pos] = 0x80 + (1 << 5);
else
coder->buf[pos] = 0x80;
}
// Set the start position for copying.
coder->buf_pos = pos;
// Uncompressed size
size_t size = coder->uncompressed_size - 1;
coder->buf[pos++] += size >> 16;
coder->buf[pos++] = (size >> 8) & 0xFF;
coder->buf[pos++] = size & 0xFF;
// Compressed size
size = coder->compressed_size - 1;
coder->buf[pos++] = size >> 8;
coder->buf[pos++] = size & 0xFF;
// Properties, if needed
if (coder->need_properties)
lzma_lzma_lclppb_encode(&coder->opt_cur, coder->buf + pos);
coder->need_properties = false;
coder->need_state_reset = false;
coder->need_dictionary_reset = false;
// The copying code uses coder->compressed_size to indicate the end
// of coder->buf[], so we need add the maximum size of the header here.
coder->compressed_size += LZMA2_HEADER_MAX;
return;
}
static void
lzma2_header_uncompressed(lzma_coder *coder)
{
assert(coder->uncompressed_size > 0);
assert(coder->uncompressed_size <= LZMA2_CHUNK_MAX);
// If this is the first chunk, we need to include dictionary
// reset indicator.
if (coder->need_dictionary_reset)
coder->buf[0] = 1;
else
coder->buf[0] = 2;
coder->need_dictionary_reset = false;
// "Compressed" size
coder->buf[1] = (coder->uncompressed_size - 1) >> 8;
coder->buf[2] = (coder->uncompressed_size - 1) & 0xFF;
// Set the start position for copying.
coder->buf_pos = 0;
return;
}
static lzma_ret
lzma2_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
uint8_t *restrict out, size_t *restrict out_pos,
size_t out_size)
{
while (*out_pos < out_size)
switch (coder->sequence) {
case SEQ_INIT:
// If there's no input left and we are flushing or finishing,
// don't start a new chunk.
if (mf_unencoded(mf) == 0) {
// Write end of payload marker if finishing.
if (mf->action == LZMA_FINISH)
out[(*out_pos)++] = 0;
return mf->action == LZMA_RUN
? LZMA_OK : LZMA_STREAM_END;
}
// Look if there are new options. At least for now,
// only lc/lp/pb can be changed.
if (coder->opt_new != NULL
&& (coder->opt_cur.lc != coder->opt_new->lc
|| coder->opt_cur.lp != coder->opt_new->lp
|| coder->opt_cur.pb != coder->opt_new->pb)) {
// Options have been changed, copy them to opt_cur.
// These get validated as part of
// lzma_lzma_encoder_reset() below.
coder->opt_cur.lc = coder->opt_new->lc;
coder->opt_cur.lp = coder->opt_new->lp;
coder->opt_cur.pb = coder->opt_new->pb;
// We need to write the new options and reset
// the encoder state.
coder->need_properties = true;
coder->need_state_reset = true;
}
if (coder->need_state_reset)
return_if_error(lzma_lzma_encoder_reset(
coder->lzma, &coder->opt_cur));
coder->uncompressed_size = 0;
coder->compressed_size = 0;
coder->sequence = SEQ_LZMA_ENCODE;
// Fall through
case SEQ_LZMA_ENCODE: {
// Calculate how much more uncompressed data this chunk
// could accept.
const uint32_t left = LZMA2_UNCOMPRESSED_MAX
- coder->uncompressed_size;
uint32_t limit;
if (left < mf->match_len_max) {
// Must flush immediatelly since the next LZMA symbol
// could make the uncompressed size of the chunk too
// big.
limit = 0;
} else {
// Calculate maximum read_limit that is OK from point
// of view of LZMA2 chunk size.
limit = mf->read_pos - mf->read_ahead
+ left - mf->match_len_max;
}
// Save the start position so that we can update
// coder->uncompressed_size.
const uint32_t read_start = mf->read_pos - mf->read_ahead;
// Call the LZMA encoder until the chunk is finished.
const lzma_ret ret = lzma_lzma_encode(coder->lzma, mf,
coder->buf + LZMA2_HEADER_MAX,
&coder->compressed_size,
LZMA2_CHUNK_MAX, limit);
coder->uncompressed_size += mf->read_pos - mf->read_ahead
- read_start;
assert(coder->compressed_size <= LZMA2_CHUNK_MAX);
assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX);
if (ret != LZMA_STREAM_END)
return LZMA_OK;
// See if the chunk compressed. If it didn't, we encode it
// as uncompressed chunk. This saves a few bytes of space
// and makes decoding faster.
if (coder->compressed_size >= coder->uncompressed_size) {
coder->uncompressed_size += mf->read_ahead;
assert(coder->uncompressed_size
<= LZMA2_UNCOMPRESSED_MAX);
mf->read_ahead = 0;
lzma2_header_uncompressed(coder);
coder->need_state_reset = true;
coder->sequence = SEQ_UNCOMPRESSED_HEADER;
break;
}
// The chunk did compress at least by one byte, so we store
// the chunk as LZMA.
lzma2_header_lzma(coder);
coder->sequence = SEQ_LZMA_COPY;
}
// Fall through
case SEQ_LZMA_COPY:
// Copy the compressed chunk along its headers to the
// output buffer.
lzma_bufcpy(coder->buf, &coder->buf_pos,
coder->compressed_size,
out, out_pos, out_size);
if (coder->buf_pos != coder->compressed_size)
return LZMA_OK;
coder->sequence = SEQ_INIT;
break;
case SEQ_UNCOMPRESSED_HEADER:
// Copy the three-byte header to indicate uncompressed chunk.
lzma_bufcpy(coder->buf, &coder->buf_pos,
LZMA2_HEADER_UNCOMPRESSED,
out, out_pos, out_size);
if (coder->buf_pos != LZMA2_HEADER_UNCOMPRESSED)
return LZMA_OK;
coder->sequence = SEQ_UNCOMPRESSED_COPY;
// Fall through
case SEQ_UNCOMPRESSED_COPY:
// Copy the uncompressed data as is from the dictionary
// to the output buffer.
mf_read(mf, out, out_pos, out_size, &coder->uncompressed_size);
if (coder->uncompressed_size != 0)
return LZMA_OK;
coder->sequence = SEQ_INIT;
break;
}
return LZMA_OK;
}
static void
lzma2_encoder_end(lzma_coder *coder, lzma_allocator *allocator)
{
lzma_free(coder->lzma, allocator);
lzma_free(coder, allocator);
return;
}
static lzma_ret
lzma2_encoder_init(lzma_lz_encoder *lz, lzma_allocator *allocator,
const void *options, lzma_lz_options *lz_options)
{
if (options == NULL)
return LZMA_PROG_ERROR;
if (lz->coder == NULL) {
lz->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (lz->coder == NULL)
return LZMA_MEM_ERROR;
lz->code = &lzma2_encode;
lz->end = &lzma2_encoder_end;
lz->coder->lzma = NULL;
}
lz->coder->opt_cur = *(const lzma_options_lzma *)(options);
lz->coder->opt_new = lz->coder->opt_cur.persistent
? options : NULL;
lz->coder->sequence = SEQ_INIT;
lz->coder->need_properties = true;
lz->coder->need_state_reset = false;
lz->coder->need_dictionary_reset
= lz->coder->opt_cur.preset_dict == NULL
|| lz->coder->opt_cur.preset_dict_size == 0;
// Initialize LZMA encoder
return_if_error(lzma_lzma_encoder_create(&lz->coder->lzma, allocator,
&lz->coder->opt_cur, lz_options));
// Make sure that we will always have enough history available in
// case we need to use uncompressed chunks. They are used when the
// compressed size of a chunk is not smaller than the uncompressed
// size, so we need to have at least LZMA2_COMPRESSED_MAX bytes
// history available.
if (lz_options->before_size + lz_options->dict_size < LZMA2_CHUNK_MAX)
lz_options->before_size
= LZMA2_CHUNK_MAX - lz_options->dict_size;
return LZMA_OK;
}
extern lzma_ret
lzma_lzma2_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
const lzma_filter_info *filters)
{
return lzma_lz_encoder_init(
next, allocator, filters, &lzma2_encoder_init);
}
extern uint64_t
lzma_lzma2_encoder_memusage(const void *options)
{
const uint64_t lzma_mem = lzma_lzma_encoder_memusage(options);
if (lzma_mem == UINT64_MAX)
return UINT64_MAX;
return sizeof(lzma_coder) + lzma_mem;
}
extern lzma_ret
lzma_lzma2_props_encode(const void *options, uint8_t *out)
{
const lzma_options_lzma *const opt = options;
uint32_t d = MAX(opt->dict_size, LZMA_DICT_SIZE_MIN);
// Round up to to the next 2^n - 1 or 2^n + 2^(n - 1) - 1 depending
// on which one is the next:
--d;
d |= d >> 2;
d |= d >> 3;
d |= d >> 4;
d |= d >> 8;
d |= d >> 16;
// Get the highest two bits using the proper encoding:
if (d == UINT32_MAX)
out[0] = 40;
else
out[0] = get_pos_slot(d + 1) - 24;
return LZMA_OK;
}