citra/src/video_core/renderer_opengl/gl_shader_manager.cpp

334 lines
13 KiB
C++
Raw Normal View History

// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <unordered_map>
#include <boost/functional/hash.hpp>
#include <boost/variant.hpp>
#include "video_core/renderer_opengl/gl_shader_manager.h"
static void SetShaderUniformBlockBinding(GLuint shader, const char* name, UniformBindings binding,
std::size_t expected_size) {
GLuint ub_index = glGetUniformBlockIndex(shader, name);
if (ub_index == GL_INVALID_INDEX) {
return;
}
GLint ub_size = 0;
glGetActiveUniformBlockiv(shader, ub_index, GL_UNIFORM_BLOCK_DATA_SIZE, &ub_size);
2018-06-30 18:24:38 +02:00
ASSERT_MSG(ub_size == expected_size, "Uniform block size did not match! Got {}, expected {}",
static_cast<int>(ub_size), expected_size);
glUniformBlockBinding(shader, ub_index, static_cast<GLuint>(binding));
}
static void SetShaderUniformBlockBindings(GLuint shader) {
SetShaderUniformBlockBinding(shader, "shader_data", UniformBindings::Common,
sizeof(UniformData));
SetShaderUniformBlockBinding(shader, "vs_config", UniformBindings::VS, sizeof(VSUniformData));
SetShaderUniformBlockBinding(shader, "gs_config", UniformBindings::GS, sizeof(GSUniformData));
}
static void SetShaderSamplerBinding(GLuint shader, const char* name,
TextureUnits::TextureUnit binding) {
GLint uniform_tex = glGetUniformLocation(shader, name);
if (uniform_tex != -1) {
glUniform1i(uniform_tex, binding.id);
}
}
static void SetShaderImageBinding(GLuint shader, const char* name, GLuint binding) {
GLint uniform_tex = glGetUniformLocation(shader, name);
if (uniform_tex != -1) {
glUniform1i(uniform_tex, static_cast<GLint>(binding));
}
}
static void SetShaderSamplerBindings(GLuint shader) {
OpenGLState cur_state = OpenGLState::GetCurState();
GLuint old_program = std::exchange(cur_state.draw.shader_program, shader);
cur_state.Apply();
// Set the texture samplers to correspond to different texture units
SetShaderSamplerBinding(shader, "tex0", TextureUnits::PicaTexture(0));
SetShaderSamplerBinding(shader, "tex1", TextureUnits::PicaTexture(1));
SetShaderSamplerBinding(shader, "tex2", TextureUnits::PicaTexture(2));
SetShaderSamplerBinding(shader, "tex_cube", TextureUnits::TextureCube);
// Set the texture samplers to correspond to different lookup table texture units
SetShaderSamplerBinding(shader, "texture_buffer_lut_rg", TextureUnits::TextureBufferLUT_RG);
SetShaderSamplerBinding(shader, "texture_buffer_lut_rgba", TextureUnits::TextureBufferLUT_RGBA);
SetShaderImageBinding(shader, "shadow_buffer", ImageUnits::ShadowBuffer);
SetShaderImageBinding(shader, "shadow_texture_px", ImageUnits::ShadowTexturePX);
SetShaderImageBinding(shader, "shadow_texture_nx", ImageUnits::ShadowTextureNX);
SetShaderImageBinding(shader, "shadow_texture_py", ImageUnits::ShadowTexturePY);
SetShaderImageBinding(shader, "shadow_texture_ny", ImageUnits::ShadowTextureNY);
SetShaderImageBinding(shader, "shadow_texture_pz", ImageUnits::ShadowTexturePZ);
SetShaderImageBinding(shader, "shadow_texture_nz", ImageUnits::ShadowTextureNZ);
cur_state.draw.shader_program = old_program;
cur_state.Apply();
}
void PicaUniformsData::SetFromRegs(const Pica::ShaderRegs& regs,
const Pica::Shader::ShaderSetup& setup) {
std::transform(std::begin(setup.uniforms.b), std::end(setup.uniforms.b), std::begin(bools),
[](bool value) -> BoolAligned { return {value ? GL_TRUE : GL_FALSE}; });
std::transform(std::begin(regs.int_uniforms), std::end(regs.int_uniforms), std::begin(i),
[](const auto& value) -> GLuvec4 {
return {value.x.Value(), value.y.Value(), value.z.Value(), value.w.Value()};
});
std::transform(std::begin(setup.uniforms.f), std::end(setup.uniforms.f), std::begin(f),
[](const auto& value) -> GLvec4 {
return {value.x.ToFloat32(), value.y.ToFloat32(), value.z.ToFloat32(),
value.w.ToFloat32()};
});
}
/**
* An object representing a shader program staging. It can be either a shader object or a program
* object, depending on whether separable program is used.
*/
class OGLShaderStage {
public:
explicit OGLShaderStage(bool separable) {
if (separable) {
shader_or_program = OGLProgram();
} else {
shader_or_program = OGLShader();
}
}
void Create(const char* source, GLenum type) {
if (shader_or_program.which() == 0) {
boost::get<OGLShader>(shader_or_program).Create(source, type);
} else {
OGLShader shader;
shader.Create(source, type);
OGLProgram& program = boost::get<OGLProgram>(shader_or_program);
program.Create(true, {shader.handle});
SetShaderUniformBlockBindings(program.handle);
SetShaderSamplerBindings(program.handle);
}
}
GLuint GetHandle() const {
if (shader_or_program.which() == 0) {
return boost::get<OGLShader>(shader_or_program).handle;
} else {
return boost::get<OGLProgram>(shader_or_program).handle;
}
}
private:
boost::variant<OGLShader, OGLProgram> shader_or_program;
};
class TrivialVertexShader {
public:
explicit TrivialVertexShader(bool separable) : program(separable) {
program.Create(GLShader::GenerateTrivialVertexShader(separable).c_str(), GL_VERTEX_SHADER);
}
GLuint Get() const {
return program.GetHandle();
}
private:
OGLShaderStage program;
};
template <typename KeyConfigType, std::string (*CodeGenerator)(const KeyConfigType&, bool),
GLenum ShaderType>
class ShaderCache {
public:
explicit ShaderCache(bool separable) : separable(separable) {}
GLuint Get(const KeyConfigType& config) {
auto [iter, new_shader] = shaders.emplace(config, OGLShaderStage{separable});
OGLShaderStage& cached_shader = iter->second;
if (new_shader) {
cached_shader.Create(CodeGenerator(config, separable).c_str(), ShaderType);
}
return cached_shader.GetHandle();
}
private:
bool separable;
std::unordered_map<KeyConfigType, OGLShaderStage> shaders;
};
// This is a cache designed for shaders translated from PICA shaders. The first cache matches the
// config structure like a normal cache does. On cache miss, the second cache matches the generated
// GLSL code. The configuration is like this because there might be leftover code in the PICA shader
// program buffer from the previous shader, which is hashed into the config, resulting several
// different config values from the same shader program.
template <typename KeyConfigType,
std::optional<std::string> (*CodeGenerator)(const Pica::Shader::ShaderSetup&,
const KeyConfigType&, bool),
GLenum ShaderType>
class ShaderDoubleCache {
public:
explicit ShaderDoubleCache(bool separable) : separable(separable) {}
GLuint Get(const KeyConfigType& key, const Pica::Shader::ShaderSetup& setup) {
auto map_it = shader_map.find(key);
if (map_it == shader_map.end()) {
auto program_opt = CodeGenerator(setup, key, separable);
if (!program_opt) {
shader_map[key] = nullptr;
return 0;
}
std::string& program = *program_opt;
auto [iter, new_shader] = shader_cache.emplace(program, OGLShaderStage{separable});
OGLShaderStage& cached_shader = iter->second;
if (new_shader) {
cached_shader.Create(program.c_str(), ShaderType);
}
shader_map[key] = &cached_shader;
return cached_shader.GetHandle();
}
if (map_it->second == nullptr) {
return 0;
}
return map_it->second->GetHandle();
}
private:
bool separable;
std::unordered_map<KeyConfigType, OGLShaderStage*> shader_map;
std::unordered_map<std::string, OGLShaderStage> shader_cache;
};
using ProgrammableVertexShaders =
ShaderDoubleCache<GLShader::PicaVSConfig, &GLShader::GenerateVertexShader, GL_VERTEX_SHADER>;
using ProgrammableGeometryShaders =
ShaderDoubleCache<GLShader::PicaGSConfig, &GLShader::GenerateGeometryShader,
GL_GEOMETRY_SHADER>;
using FixedGeometryShaders =
ShaderCache<GLShader::PicaFixedGSConfig, &GLShader::GenerateFixedGeometryShader,
GL_GEOMETRY_SHADER>;
using FragmentShaders =
ShaderCache<GLShader::PicaFSConfig, &GLShader::GenerateFragmentShader, GL_FRAGMENT_SHADER>;
class ShaderProgramManager::Impl {
public:
explicit Impl(bool separable, bool is_amd)
: is_amd(is_amd), separable(separable), programmable_vertex_shaders(separable),
trivial_vertex_shader(separable), programmable_geometry_shaders(separable),
fixed_geometry_shaders(separable), fragment_shaders(separable) {
if (separable)
pipeline.Create();
}
struct ShaderTuple {
GLuint vs = 0;
GLuint gs = 0;
GLuint fs = 0;
bool operator==(const ShaderTuple& rhs) const {
return std::tie(vs, gs, fs) == std::tie(rhs.vs, rhs.gs, rhs.fs);
}
bool operator!=(const ShaderTuple& rhs) const {
return std::tie(vs, gs, fs) != std::tie(rhs.vs, rhs.gs, rhs.fs);
}
struct Hash {
std::size_t operator()(const ShaderTuple& tuple) const {
std::size_t hash = 0;
boost::hash_combine(hash, tuple.vs);
boost::hash_combine(hash, tuple.gs);
boost::hash_combine(hash, tuple.fs);
return hash;
}
};
};
bool is_amd;
ShaderTuple current;
ProgrammableVertexShaders programmable_vertex_shaders;
TrivialVertexShader trivial_vertex_shader;
ProgrammableGeometryShaders programmable_geometry_shaders;
FixedGeometryShaders fixed_geometry_shaders;
FragmentShaders fragment_shaders;
bool separable;
std::unordered_map<ShaderTuple, OGLProgram, ShaderTuple::Hash> program_cache;
OGLPipeline pipeline;
};
ShaderProgramManager::ShaderProgramManager(bool separable, bool is_amd)
: impl(std::make_unique<Impl>(separable, is_amd)) {}
ShaderProgramManager::~ShaderProgramManager() = default;
bool ShaderProgramManager::UseProgrammableVertexShader(const GLShader::PicaVSConfig& config,
const Pica::Shader::ShaderSetup setup) {
GLuint handle = impl->programmable_vertex_shaders.Get(config, setup);
if (handle == 0)
return false;
impl->current.vs = handle;
return true;
}
void ShaderProgramManager::UseTrivialVertexShader() {
impl->current.vs = impl->trivial_vertex_shader.Get();
}
bool ShaderProgramManager::UseProgrammableGeometryShader(const GLShader::PicaGSConfig& config,
const Pica::Shader::ShaderSetup setup) {
GLuint handle = impl->programmable_geometry_shaders.Get(config, setup);
if (handle == 0)
return false;
impl->current.gs = handle;
return true;
}
void ShaderProgramManager::UseFixedGeometryShader(const GLShader::PicaFixedGSConfig& config) {
impl->current.gs = impl->fixed_geometry_shaders.Get(config);
}
void ShaderProgramManager::UseTrivialGeometryShader() {
impl->current.gs = 0;
}
void ShaderProgramManager::UseFragmentShader(const GLShader::PicaFSConfig& config) {
impl->current.fs = impl->fragment_shaders.Get(config);
}
void ShaderProgramManager::ApplyTo(OpenGLState& state) {
if (impl->separable) {
if (impl->is_amd) {
// Without this reseting, AMD sometimes freezes when one stage is changed but not for
// the others.
// On the other hand, including this reset seems to introduce memory leak in Intel
// Graphics.
glUseProgramStages(
impl->pipeline.handle,
GL_VERTEX_SHADER_BIT | GL_GEOMETRY_SHADER_BIT | GL_FRAGMENT_SHADER_BIT, 0);
}
glUseProgramStages(impl->pipeline.handle, GL_VERTEX_SHADER_BIT, impl->current.vs);
glUseProgramStages(impl->pipeline.handle, GL_GEOMETRY_SHADER_BIT, impl->current.gs);
glUseProgramStages(impl->pipeline.handle, GL_FRAGMENT_SHADER_BIT, impl->current.fs);
state.draw.shader_program = 0;
state.draw.program_pipeline = impl->pipeline.handle;
} else {
OGLProgram& cached_program = impl->program_cache[impl->current];
if (cached_program.handle == 0) {
cached_program.Create(false, {impl->current.vs, impl->current.gs, impl->current.fs});
SetShaderUniformBlockBindings(cached_program.handle);
SetShaderSamplerBindings(cached_program.handle);
}
state.draw.shader_program = cached_program.handle;
}
}