mirror of
https://git.suyu.dev/suyu/suyu.git
synced 2024-11-22 23:02:47 +01:00
Merge pull request #2965 from FernandoS27/fair-core-timing
Core Timing: Rework Core Timing to run all cores evenly.
This commit is contained in:
commit
cab2619aeb
7 changed files with 146 additions and 133 deletions
|
@ -116,7 +116,7 @@ public:
|
|||
num_interpreted_instructions = 0;
|
||||
}
|
||||
u64 GetTicksRemaining() override {
|
||||
return std::max(parent.system.CoreTiming().GetDowncount(), 0);
|
||||
return std::max(parent.system.CoreTiming().GetDowncount(), s64{0});
|
||||
}
|
||||
u64 GetCNTPCT() override {
|
||||
return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks());
|
||||
|
|
|
@ -156,7 +156,7 @@ void ARM_Unicorn::Run() {
|
|||
if (GDBStub::IsServerEnabled()) {
|
||||
ExecuteInstructions(std::max(4000000, 0));
|
||||
} else {
|
||||
ExecuteInstructions(std::max(system.CoreTiming().GetDowncount(), 0));
|
||||
ExecuteInstructions(std::max(system.CoreTiming().GetDowncount(), s64{0}));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -85,24 +85,16 @@ void Cpu::RunLoop(bool tight_loop) {
|
|||
// instead advance to the next event and try to yield to the next thread
|
||||
if (Kernel::GetCurrentThread() == nullptr) {
|
||||
LOG_TRACE(Core, "Core-{} idling", core_index);
|
||||
|
||||
if (IsMainCore()) {
|
||||
// TODO(Subv): Only let CoreTiming idle if all 4 cores are idling.
|
||||
core_timing.Idle();
|
||||
core_timing.Advance();
|
||||
}
|
||||
|
||||
core_timing.Idle();
|
||||
core_timing.Advance();
|
||||
PrepareReschedule();
|
||||
} else {
|
||||
if (IsMainCore()) {
|
||||
core_timing.Advance();
|
||||
}
|
||||
|
||||
if (tight_loop) {
|
||||
arm_interface->Run();
|
||||
} else {
|
||||
arm_interface->Step();
|
||||
}
|
||||
core_timing.Advance();
|
||||
}
|
||||
|
||||
Reschedule();
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
|
||||
namespace Core::Timing {
|
||||
|
||||
constexpr int MAX_SLICE_LENGTH = 20000;
|
||||
constexpr int MAX_SLICE_LENGTH = 10000;
|
||||
|
||||
struct CoreTiming::Event {
|
||||
s64 time;
|
||||
|
@ -38,10 +38,12 @@ CoreTiming::CoreTiming() = default;
|
|||
CoreTiming::~CoreTiming() = default;
|
||||
|
||||
void CoreTiming::Initialize() {
|
||||
downcount = MAX_SLICE_LENGTH;
|
||||
downcounts.fill(MAX_SLICE_LENGTH);
|
||||
time_slice.fill(MAX_SLICE_LENGTH);
|
||||
slice_length = MAX_SLICE_LENGTH;
|
||||
global_timer = 0;
|
||||
idled_cycles = 0;
|
||||
current_context = 0;
|
||||
|
||||
// The time between CoreTiming being initialized and the first call to Advance() is considered
|
||||
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
|
||||
|
@ -110,7 +112,7 @@ void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) {
|
|||
u64 CoreTiming::GetTicks() const {
|
||||
u64 ticks = static_cast<u64>(global_timer);
|
||||
if (!is_global_timer_sane) {
|
||||
ticks += slice_length - downcount;
|
||||
ticks += accumulated_ticks;
|
||||
}
|
||||
return ticks;
|
||||
}
|
||||
|
@ -120,7 +122,8 @@ u64 CoreTiming::GetIdleTicks() const {
|
|||
}
|
||||
|
||||
void CoreTiming::AddTicks(u64 ticks) {
|
||||
downcount -= static_cast<int>(ticks);
|
||||
accumulated_ticks += ticks;
|
||||
downcounts[current_context] -= static_cast<s64>(ticks);
|
||||
}
|
||||
|
||||
void CoreTiming::ClearPendingEvents() {
|
||||
|
@ -141,22 +144,35 @@ void CoreTiming::RemoveEvent(const EventType* event_type) {
|
|||
|
||||
void CoreTiming::ForceExceptionCheck(s64 cycles) {
|
||||
cycles = std::max<s64>(0, cycles);
|
||||
if (downcount <= cycles) {
|
||||
if (downcounts[current_context] <= cycles) {
|
||||
return;
|
||||
}
|
||||
|
||||
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
|
||||
// here. Account for cycles already executed by adjusting the g.slice_length
|
||||
slice_length -= downcount - static_cast<int>(cycles);
|
||||
downcount = static_cast<int>(cycles);
|
||||
downcounts[current_context] = static_cast<int>(cycles);
|
||||
}
|
||||
|
||||
std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const {
|
||||
const u64 original_context = current_context;
|
||||
u64 next_context = (original_context + 1) % num_cpu_cores;
|
||||
while (next_context != original_context) {
|
||||
if (time_slice[next_context] >= needed_ticks) {
|
||||
return {next_context};
|
||||
} else if (time_slice[next_context] >= 0) {
|
||||
return std::nullopt;
|
||||
}
|
||||
next_context = (next_context + 1) % num_cpu_cores;
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
void CoreTiming::Advance() {
|
||||
std::unique_lock<std::mutex> guard(inner_mutex);
|
||||
|
||||
const int cycles_executed = slice_length - downcount;
|
||||
const u64 cycles_executed = accumulated_ticks;
|
||||
time_slice[current_context] = std::max<s64>(0, time_slice[current_context] - accumulated_ticks);
|
||||
global_timer += cycles_executed;
|
||||
slice_length = MAX_SLICE_LENGTH;
|
||||
|
||||
is_global_timer_sane = true;
|
||||
|
||||
|
@ -173,24 +189,46 @@ void CoreTiming::Advance() {
|
|||
|
||||
// Still events left (scheduled in the future)
|
||||
if (!event_queue.empty()) {
|
||||
slice_length = static_cast<int>(
|
||||
std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH));
|
||||
const s64 needed_ticks =
|
||||
std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
|
||||
const auto next_core = NextAvailableCore(needed_ticks);
|
||||
if (next_core) {
|
||||
downcounts[*next_core] = needed_ticks;
|
||||
}
|
||||
}
|
||||
|
||||
downcount = slice_length;
|
||||
accumulated_ticks = 0;
|
||||
|
||||
downcounts[current_context] = time_slice[current_context];
|
||||
}
|
||||
|
||||
void CoreTiming::ResetRun() {
|
||||
downcounts.fill(MAX_SLICE_LENGTH);
|
||||
time_slice.fill(MAX_SLICE_LENGTH);
|
||||
current_context = 0;
|
||||
// Still events left (scheduled in the future)
|
||||
if (!event_queue.empty()) {
|
||||
const s64 needed_ticks =
|
||||
std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
|
||||
downcounts[current_context] = needed_ticks;
|
||||
}
|
||||
|
||||
is_global_timer_sane = false;
|
||||
accumulated_ticks = 0;
|
||||
}
|
||||
|
||||
void CoreTiming::Idle() {
|
||||
idled_cycles += downcount;
|
||||
downcount = 0;
|
||||
accumulated_ticks += downcounts[current_context];
|
||||
idled_cycles += downcounts[current_context];
|
||||
downcounts[current_context] = 0;
|
||||
}
|
||||
|
||||
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
||||
return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE};
|
||||
}
|
||||
|
||||
int CoreTiming::GetDowncount() const {
|
||||
return downcount;
|
||||
s64 CoreTiming::GetDowncount() const {
|
||||
return downcounts[current_context];
|
||||
}
|
||||
|
||||
} // namespace Core::Timing
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
#include <chrono>
|
||||
#include <functional>
|
||||
#include <mutex>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
@ -104,7 +105,19 @@ public:
|
|||
|
||||
std::chrono::microseconds GetGlobalTimeUs() const;
|
||||
|
||||
int GetDowncount() const;
|
||||
void ResetRun();
|
||||
|
||||
s64 GetDowncount() const;
|
||||
|
||||
void SwitchContext(u64 new_context) {
|
||||
current_context = new_context;
|
||||
}
|
||||
|
||||
bool CanCurrentContextRun() const {
|
||||
return time_slice[current_context] > 0;
|
||||
}
|
||||
|
||||
std::optional<u64> NextAvailableCore(const s64 needed_ticks) const;
|
||||
|
||||
private:
|
||||
struct Event;
|
||||
|
@ -112,10 +125,16 @@ private:
|
|||
/// Clear all pending events. This should ONLY be done on exit.
|
||||
void ClearPendingEvents();
|
||||
|
||||
static constexpr u64 num_cpu_cores = 4;
|
||||
|
||||
s64 global_timer = 0;
|
||||
s64 idled_cycles = 0;
|
||||
int slice_length = 0;
|
||||
int downcount = 0;
|
||||
s64 slice_length = 0;
|
||||
u64 accumulated_ticks = 0;
|
||||
std::array<s64, num_cpu_cores> downcounts{};
|
||||
// Slice of time assigned to each core per run.
|
||||
std::array<s64, num_cpu_cores> time_slice{};
|
||||
u64 current_context = 0;
|
||||
|
||||
// Are we in a function that has been called from Advance()
|
||||
// If events are scheduled from a function that gets called from Advance(),
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
#include "core/arm/exclusive_monitor.h"
|
||||
#include "core/core.h"
|
||||
#include "core/core_cpu.h"
|
||||
#include "core/core_timing.h"
|
||||
#include "core/cpu_core_manager.h"
|
||||
#include "core/gdbstub/gdbstub.h"
|
||||
#include "core/settings.h"
|
||||
|
@ -122,13 +123,19 @@ void CpuCoreManager::RunLoop(bool tight_loop) {
|
|||
}
|
||||
}
|
||||
|
||||
for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
|
||||
cores[active_core]->RunLoop(tight_loop);
|
||||
if (Settings::values.use_multi_core) {
|
||||
// Cores 1-3 are run on other threads in this mode
|
||||
break;
|
||||
auto& core_timing = system.CoreTiming();
|
||||
core_timing.ResetRun();
|
||||
bool keep_running{};
|
||||
do {
|
||||
keep_running = false;
|
||||
for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
|
||||
core_timing.SwitchContext(active_core);
|
||||
if (core_timing.CanCurrentContextRun()) {
|
||||
cores[active_core]->RunLoop(tight_loop);
|
||||
}
|
||||
keep_running |= core_timing.CanCurrentContextRun();
|
||||
}
|
||||
}
|
||||
} while (keep_running);
|
||||
|
||||
if (GDBStub::IsServerEnabled()) {
|
||||
GDBStub::SetCpuStepFlag(false);
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
#include <array>
|
||||
#include <bitset>
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include "common/file_util.h"
|
||||
#include "core/core.h"
|
||||
|
@ -13,7 +14,7 @@
|
|||
|
||||
// Numbers are chosen randomly to make sure the correct one is given.
|
||||
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
||||
static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals
|
||||
static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
|
||||
|
||||
static std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
||||
static u64 expected_callback = 0;
|
||||
|
@ -28,6 +29,12 @@ void CallbackTemplate(u64 userdata, s64 cycles_late) {
|
|||
REQUIRE(lateness == cycles_late);
|
||||
}
|
||||
|
||||
static u64 callbacks_done = 0;
|
||||
|
||||
void EmptyCallback(u64 userdata, s64 cycles_late) {
|
||||
++callbacks_done;
|
||||
}
|
||||
|
||||
struct ScopeInit final {
|
||||
ScopeInit() {
|
||||
core_timing.Initialize();
|
||||
|
@ -39,18 +46,19 @@ struct ScopeInit final {
|
|||
Core::Timing::CoreTiming core_timing;
|
||||
};
|
||||
|
||||
static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, int downcount,
|
||||
static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
|
||||
int expected_lateness = 0, int cpu_downcount = 0) {
|
||||
callbacks_ran_flags = 0;
|
||||
expected_callback = CB_IDS[idx];
|
||||
lateness = expected_lateness;
|
||||
|
||||
// Pretend we executed X cycles of instructions.
|
||||
core_timing.SwitchContext(context);
|
||||
core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
|
||||
core_timing.Advance();
|
||||
core_timing.SwitchContext((context + 1) % 4);
|
||||
|
||||
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
|
||||
REQUIRE(downcount == core_timing.GetDowncount());
|
||||
}
|
||||
|
||||
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
||||
|
@ -64,9 +72,10 @@ TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
|||
Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
|
||||
|
||||
// Enter slice 0
|
||||
core_timing.Advance();
|
||||
core_timing.ResetRun();
|
||||
|
||||
// D -> B -> C -> A -> E
|
||||
core_timing.SwitchContext(0);
|
||||
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
||||
REQUIRE(1000 == core_timing.GetDowncount());
|
||||
core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
|
||||
|
@ -78,98 +87,46 @@ TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
|||
core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
|
||||
REQUIRE(100 == core_timing.GetDowncount());
|
||||
|
||||
AdvanceAndCheck(core_timing, 3, 400);
|
||||
AdvanceAndCheck(core_timing, 1, 300);
|
||||
AdvanceAndCheck(core_timing, 2, 200);
|
||||
AdvanceAndCheck(core_timing, 0, 200);
|
||||
AdvanceAndCheck(core_timing, 4, MAX_SLICE_LENGTH);
|
||||
AdvanceAndCheck(core_timing, 3, 0);
|
||||
AdvanceAndCheck(core_timing, 1, 1);
|
||||
AdvanceAndCheck(core_timing, 2, 2);
|
||||
AdvanceAndCheck(core_timing, 0, 3);
|
||||
AdvanceAndCheck(core_timing, 4, 0);
|
||||
}
|
||||
|
||||
TEST_CASE("CoreTiming[Threadsave]", "[core]") {
|
||||
ScopeInit guard;
|
||||
auto& core_timing = guard.core_timing;
|
||||
|
||||
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
||||
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
||||
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
|
||||
Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>);
|
||||
Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
|
||||
|
||||
// Enter slice 0
|
||||
core_timing.Advance();
|
||||
|
||||
// D -> B -> C -> A -> E
|
||||
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
||||
// Manually force since ScheduleEvent doesn't call it
|
||||
core_timing.ForceExceptionCheck(1000);
|
||||
REQUIRE(1000 == core_timing.GetDowncount());
|
||||
core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
|
||||
// Manually force since ScheduleEvent doesn't call it
|
||||
core_timing.ForceExceptionCheck(500);
|
||||
REQUIRE(500 == core_timing.GetDowncount());
|
||||
core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
|
||||
// Manually force since ScheduleEvent doesn't call it
|
||||
core_timing.ForceExceptionCheck(800);
|
||||
REQUIRE(500 == core_timing.GetDowncount());
|
||||
core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
|
||||
// Manually force since ScheduleEvent doesn't call it
|
||||
core_timing.ForceExceptionCheck(100);
|
||||
REQUIRE(100 == core_timing.GetDowncount());
|
||||
core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
|
||||
// Manually force since ScheduleEvent doesn't call it
|
||||
core_timing.ForceExceptionCheck(1200);
|
||||
REQUIRE(100 == core_timing.GetDowncount());
|
||||
|
||||
AdvanceAndCheck(core_timing, 3, 400);
|
||||
AdvanceAndCheck(core_timing, 1, 300);
|
||||
AdvanceAndCheck(core_timing, 2, 200);
|
||||
AdvanceAndCheck(core_timing, 0, 200);
|
||||
AdvanceAndCheck(core_timing, 4, MAX_SLICE_LENGTH);
|
||||
}
|
||||
|
||||
namespace SharedSlotTest {
|
||||
static unsigned int counter = 0;
|
||||
|
||||
template <unsigned int ID>
|
||||
void FifoCallback(u64 userdata, s64 cycles_late) {
|
||||
static_assert(ID < CB_IDS.size(), "ID out of range");
|
||||
callbacks_ran_flags.set(ID);
|
||||
REQUIRE(CB_IDS[ID] == userdata);
|
||||
REQUIRE(ID == counter);
|
||||
REQUIRE(lateness == cycles_late);
|
||||
++counter;
|
||||
}
|
||||
} // namespace SharedSlotTest
|
||||
|
||||
TEST_CASE("CoreTiming[SharedSlot]", "[core]") {
|
||||
using namespace SharedSlotTest;
|
||||
TEST_CASE("CoreTiming[FairSharing]", "[core]") {
|
||||
|
||||
ScopeInit guard;
|
||||
auto& core_timing = guard.core_timing;
|
||||
|
||||
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", FifoCallback<0>);
|
||||
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", FifoCallback<1>);
|
||||
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", FifoCallback<2>);
|
||||
Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", FifoCallback<3>);
|
||||
Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", FifoCallback<4>);
|
||||
Core::Timing::EventType* empty_callback =
|
||||
core_timing.RegisterEvent("empty_callback", EmptyCallback);
|
||||
|
||||
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
||||
core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
|
||||
core_timing.ScheduleEvent(1000, cb_c, CB_IDS[2]);
|
||||
core_timing.ScheduleEvent(1000, cb_d, CB_IDS[3]);
|
||||
core_timing.ScheduleEvent(1000, cb_e, CB_IDS[4]);
|
||||
callbacks_done = 0;
|
||||
u64 MAX_CALLBACKS = 10;
|
||||
for (std::size_t i = 0; i < 10; i++) {
|
||||
core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
|
||||
}
|
||||
|
||||
// Enter slice 0
|
||||
core_timing.Advance();
|
||||
REQUIRE(1000 == core_timing.GetDowncount());
|
||||
const s64 advances = MAX_SLICE_LENGTH / 10;
|
||||
core_timing.ResetRun();
|
||||
u64 current_time = core_timing.GetTicks();
|
||||
bool keep_running{};
|
||||
do {
|
||||
keep_running = false;
|
||||
for (u32 active_core = 0; active_core < 4; ++active_core) {
|
||||
core_timing.SwitchContext(active_core);
|
||||
if (core_timing.CanCurrentContextRun()) {
|
||||
core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
|
||||
core_timing.Advance();
|
||||
}
|
||||
keep_running |= core_timing.CanCurrentContextRun();
|
||||
}
|
||||
} while (keep_running);
|
||||
u64 current_time_2 = core_timing.GetTicks();
|
||||
|
||||
callbacks_ran_flags = 0;
|
||||
counter = 0;
|
||||
lateness = 0;
|
||||
core_timing.AddTicks(core_timing.GetDowncount());
|
||||
core_timing.Advance();
|
||||
REQUIRE(MAX_SLICE_LENGTH == core_timing.GetDowncount());
|
||||
REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong());
|
||||
REQUIRE(MAX_CALLBACKS == callbacks_done);
|
||||
REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
|
||||
}
|
||||
|
||||
TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
|
||||
|
@ -180,13 +137,13 @@ TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
|
|||
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
||||
|
||||
// Enter slice 0
|
||||
core_timing.Advance();
|
||||
core_timing.ResetRun();
|
||||
|
||||
core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
|
||||
core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
|
||||
|
||||
AdvanceAndCheck(core_timing, 0, 90, 10, -10); // (100 - 10)
|
||||
AdvanceAndCheck(core_timing, 1, MAX_SLICE_LENGTH, 50, -50);
|
||||
AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
|
||||
AdvanceAndCheck(core_timing, 1, 1, 50, -50);
|
||||
}
|
||||
|
||||
namespace ChainSchedulingTest {
|
||||
|
@ -220,7 +177,7 @@ TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
|
|||
});
|
||||
|
||||
// Enter slice 0
|
||||
core_timing.Advance();
|
||||
core_timing.ResetRun();
|
||||
|
||||
core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]);
|
||||
core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
|
||||
|
@ -229,19 +186,19 @@ TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
|
|||
REQUIRE(800 == core_timing.GetDowncount());
|
||||
|
||||
reschedules = 3;
|
||||
AdvanceAndCheck(core_timing, 0, 200); // cb_a
|
||||
AdvanceAndCheck(core_timing, 1, 1000); // cb_b, cb_rs
|
||||
AdvanceAndCheck(core_timing, 0, 0); // cb_a
|
||||
AdvanceAndCheck(core_timing, 1, 1); // cb_b, cb_rs
|
||||
REQUIRE(2 == reschedules);
|
||||
|
||||
core_timing.AddTicks(core_timing.GetDowncount());
|
||||
core_timing.Advance(); // cb_rs
|
||||
core_timing.SwitchContext(3);
|
||||
REQUIRE(1 == reschedules);
|
||||
REQUIRE(200 == core_timing.GetDowncount());
|
||||
|
||||
AdvanceAndCheck(core_timing, 2, 800); // cb_c
|
||||
AdvanceAndCheck(core_timing, 2, 3); // cb_c
|
||||
|
||||
core_timing.AddTicks(core_timing.GetDowncount());
|
||||
core_timing.Advance(); // cb_rs
|
||||
REQUIRE(0 == reschedules);
|
||||
REQUIRE(MAX_SLICE_LENGTH == core_timing.GetDowncount());
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue