multi-speaker-tacotron-tens.../datasets/generate_data.py

192 lines
6 KiB
Python
Raw Normal View History

2017-10-15 16:00:17 +02:00
# Code based on https://github.com/keithito/tacotron/blob/master/datasets/ljspeech.py
import os
import re
import sys
import json
import argparse
import numpy as np
from tqdm import tqdm
from glob import glob
from functools import partial
from collections import Counter, defaultdict
from concurrent.futures import ProcessPoolExecutor
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from hparams import hparams
from text import text_to_sequence
from utils import makedirs, remove_file, warning
from audio import load_audio, spectrogram, melspectrogram, frames_to_hours
def one(x=None):
return 1
def build_from_path(config):
warning("Sampling rate: {}".format(hparams.sample_rate))
executor = ProcessPoolExecutor(max_workers=config.num_workers)
futures = []
index = 1
base_dir = os.path.dirname(config.metadata_path)
data_dir = os.path.join(base_dir, config.data_dirname)
makedirs(data_dir)
loss_coeff = defaultdict(one)
if config.metadata_path.endswith("json"):
with open(config.metadata_path) as f:
content = f.read()
info = json.loads(content)
elif config.metadata_path.endswith("csv"):
with open(config.metadata_path) as f:
info = {}
for line in f:
path, text = line.strip().split('|')
info[path] = text
else:
raise Exception(" [!] Unkown metadata format: {}".format(config.metadata_path))
new_info = {}
for path in info.keys():
if not os.path.exists(path):
new_path = os.path.join(base_dir, path)
if not os.path.exists(new_path):
print(" [!] Audio not found: {}".format([path, new_path]))
continue
else:
new_path = path
new_info[new_path] = info[path]
info = new_info
for path in info.keys():
if type(info[path]) == list:
if hparams.ignore_recognition_level == 1 and len(info[path]) == 1 or \
hparams.ignore_recognition_level == 2:
loss_coeff[path] = hparams.recognition_loss_coeff
info[path] = info[path][0]
ignore_description = {
0: "use all",
1: "ignore only unmatched_alignment",
2: "fully ignore recognitio",
}
print(" [!] Skip recognition level: {} ({})". \
format(hparams.ignore_recognition_level,
ignore_description[hparams.ignore_recognition_level]))
for audio_path, text in info.items():
if hparams.ignore_recognition_level > 0 and loss_coeff[audio_path] != 1:
continue
if base_dir not in audio_path:
audio_path = os.path.join(base_dir, audio_path)
try:
tokens = text_to_sequence(text)
except:
continue
fn = partial(
_process_utterance,
audio_path, data_dir, tokens, loss_coeff[audio_path])
futures.append(executor.submit(fn))
n_frames = [future.result() for future in tqdm(futures)]
n_frames = [n_frame for n_frame in n_frames if n_frame is not None]
hours = frames_to_hours(n_frames)
print(' [*] Loaded metadata for {} examples ({:.2f} hours)'.format(len(n_frames), hours))
print(' [*] Max length: {}'.format(max(n_frames)))
print(' [*] Min length: {}'.format(min(n_frames)))
plot_n_frames(n_frames, os.path.join(
base_dir, "n_frames_before_filter.png"))
min_n_frame = hparams.reduction_factor * hparams.min_iters
max_n_frame = hparams.reduction_factor * hparams.max_iters - hparams.reduction_factor
n_frames = [n for n in n_frames if min_n_frame <= n <= max_n_frame]
hours = frames_to_hours(n_frames)
print(' [*] After filtered: {} examples ({:.2f} hours)'.format(len(n_frames), hours))
print(' [*] Max length: {}'.format(max(n_frames)))
print(' [*] Min length: {}'.format(min(n_frames)))
plot_n_frames(n_frames, os.path.join(
base_dir, "n_frames_after_filter.png"))
def plot_n_frames(n_frames, path):
labels, values = list(zip(*Counter(n_frames).most_common()))
values = [v for _, v in sorted(zip(labels, values))]
labels = sorted(labels)
indexes = np.arange(len(labels))
width = 1
fig, ax = plt.subplots(figsize=(len(labels) / 2, 5))
plt.bar(indexes, values, width)
plt.xticks(indexes + width * 0.5, labels)
plt.tight_layout()
plt.savefig(path)
def _process_utterance(audio_path, data_dir, tokens, loss_coeff):
audio_name = os.path.basename(audio_path)
filename = audio_name.rsplit('.', 1)[0] + ".npz"
numpy_path = os.path.join(data_dir, filename)
if not os.path.exists(numpy_path):
wav = load_audio(audio_path)
linear_spectrogram = spectrogram(wav).astype(np.float32)
mel_spectrogram = melspectrogram(wav).astype(np.float32)
data = {
"linear": linear_spectrogram.T,
"mel": mel_spectrogram.T,
"tokens": tokens,
"loss_coeff": loss_coeff,
}
n_frame = linear_spectrogram.shape[1]
if hparams.skip_inadequate:
min_n_frame = hparams.reduction_factor * hparams.min_iters
max_n_frame = hparams.reduction_factor * hparams.max_iters - hparams.reduction_factor
if min_n_frame <= n_frame <= max_n_frame and len(tokens) >= hparams.min_tokens:
return None
np.savez(numpy_path, **data, allow_pickle=False)
else:
try:
data = np.load(numpy_path)
n_frame = data["linear"].shape[0]
except:
remove_file(numpy_path)
return _process_utterance(audio_path, data_dir, tokens, loss_coeff)
return n_frame
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='spectrogram')
parser.add_argument('metadata_path', type=str)
parser.add_argument('--data_dirname', type=str, default="data")
parser.add_argument('--num_workers', type=int, default=None)
config = parser.parse_args()
build_from_path(config)