multi-speaker-tacotron-tens.../datasets/datafeeder.py
2017-10-16 16:41:44 +09:00

328 lines
12 KiB
Python

import os
import time
import pprint
import random
import threading
import traceback
import numpy as np
from glob import glob
import tensorflow as tf
from collections import defaultdict
import text
from utils.infolog import log
from utils import parallel_run, remove_file
from audio import frames_to_hours
from audio.get_duration import get_durations
_pad = 0
def get_frame(path):
data = np.load(path)
n_frame = data["linear"].shape[0]
n_token = len(data["tokens"])
return (path, n_frame, n_token)
def get_path_dict(
data_dirs, hparams, config,
data_type, n_test=None,
rng=np.random.RandomState(123)):
# Load metadata:
path_dict = {}
for data_dir in data_dirs:
paths = glob("{}/*.npz".format(data_dir))
if data_type == 'train':
rng.shuffle(paths)
if not config.skip_path_filter:
items = parallel_run(
get_frame, paths, desc="filter_by_min_max_frame_batch", parallel=True)
min_n_frame = hparams.reduction_factor * hparams.min_iters
max_n_frame = hparams.reduction_factor * hparams.max_iters - hparams.reduction_factor
new_items = [(path, n) for path, n, n_tokens in items \
if min_n_frame <= n <= max_n_frame and n_tokens >= hparams.min_tokens]
if any(check in data_dir for check in ["son", "yuinna"]):
blacklists = [".0000.", ".0001.", "NB11479580.0001"]
new_items = [item for item in new_items \
if any(check not in item[0] for check in blacklists)]
new_paths = [path for path, n in new_items]
new_n_frames = [n for path, n in new_items]
hours = frames_to_hours(new_n_frames)
log(' [{}] Loaded metadata for {} examples ({:.2f} hours)'. \
format(data_dir, len(new_n_frames), hours))
log(' [{}] Max length: {}'.format(data_dir, max(new_n_frames)))
log(' [{}] Min length: {}'.format(data_dir, min(new_n_frames)))
else:
new_paths = paths
if data_type == 'train':
new_paths = new_paths[:-n_test]
elif data_type == 'test':
new_paths = new_paths[-n_test:]
else:
raise Exception(" [!] Unkown data_type: {}".format(data_type))
path_dict[data_dir] = new_paths
return path_dict
class DataFeeder(threading.Thread):
'''Feeds batches of data into a queue on a background thread.'''
def __init__(self, coordinator, data_dirs,
hparams, config, batches_per_group, data_type, batch_size):
super(DataFeeder, self).__init__()
self._coord = coordinator
self._hp = hparams
self._cleaner_names = [x.strip() for x in hparams.cleaners.split(',')]
self._step = 0
self._offset = defaultdict(lambda: 2)
self._batches_per_group = batches_per_group
self.rng = np.random.RandomState(config.random_seed)
self.data_type = data_type
self.batch_size = batch_size
self.min_tokens = hparams.min_tokens
self.min_n_frame = hparams.reduction_factor * hparams.min_iters
self.max_n_frame = hparams.reduction_factor * hparams.max_iters - hparams.reduction_factor
self.skip_path_filter = config.skip_path_filter
# Load metadata:
self.path_dict = get_path_dict(
data_dirs, self._hp, config, self.data_type,
n_test=self.batch_size, rng=self.rng)
self.data_dirs = list(self.path_dict.keys())
self.data_dir_to_id = {
data_dir: idx for idx, data_dir in enumerate(self.data_dirs)}
data_weight = {
data_dir: 1. for data_dir in self.data_dirs
}
if self._hp.main_data_greedy_factor > 0 and \
any(main_data in data_dir for data_dir in self.data_dirs \
for main_data in self._hp.main_data):
for main_data in self._hp.main_data:
for data_dir in self.data_dirs:
if main_data in data_dir:
data_weight[data_dir] += self._hp.main_data_greedy_factor
weight_Z = sum(data_weight.values())
self.data_ratio = {
data_dir: weight / weight_Z for data_dir, weight in data_weight.items()
}
log("="*40)
log(pprint.pformat(self.data_ratio, indent=4))
log("="*40)
#audio_paths = [path.replace("/data/", "/audio/"). \
# replace(".npz", ".wav") for path in self.data_paths]
#duration = get_durations(audio_paths, print_detail=False)
# Create placeholders for inputs and targets. Don't specify batch size because we want to
# be able to feed different sized batches at eval time.
self._placeholders = [
tf.placeholder(tf.int32, [None, None], 'inputs'),
tf.placeholder(tf.int32, [None], 'input_lengths'),
tf.placeholder(tf.float32, [None], 'loss_coeff'),
tf.placeholder(tf.float32, [None, None, hparams.num_mels], 'mel_targets'),
tf.placeholder(tf.float32, [None, None, hparams.num_freq], 'linear_targets'),
]
# Create queue for buffering data:
dtypes = [tf.int32, tf.int32, tf.float32, tf.float32, tf.float32]
self.is_multi_speaker = len(self.data_dirs) > 1
if self.is_multi_speaker:
self._placeholders.append(
tf.placeholder(tf.int32, [None], 'inputs'),
)
dtypes.append(tf.int32)
num_worker = 8 if self.data_type == 'train' else 1
queue = tf.FIFOQueue(num_worker, dtypes, name='input_queue')
self._enqueue_op = queue.enqueue(self._placeholders)
if self.is_multi_speaker:
self.inputs, self.input_lengths, self.loss_coeff, \
self.mel_targets, self.linear_targets, self.speaker_id = queue.dequeue()
else:
self.inputs, self.input_lengths, self.loss_coeff, \
self.mel_targets, self.linear_targets = queue.dequeue()
self.inputs.set_shape(self._placeholders[0].shape)
self.input_lengths.set_shape(self._placeholders[1].shape)
self.loss_coeff.set_shape(self._placeholders[2].shape)
self.mel_targets.set_shape(self._placeholders[3].shape)
self.linear_targets.set_shape(self._placeholders[4].shape)
if self.is_multi_speaker:
self.speaker_id.set_shape(self._placeholders[5].shape)
else:
self.speaker_id = None
if self.data_type == 'test':
examples = []
while True:
for data_dir in self.data_dirs:
examples.append(self._get_next_example(data_dir))
#print(data_dir, text.sequence_to_text(examples[-1][0], False, True))
if len(examples) >= self.batch_size:
break
if len(examples) >= self.batch_size:
break
self.static_batches = [examples for _ in range(self._batches_per_group)]
else:
self.static_batches = None
def start_in_session(self, session, start_step):
self._step = start_step
self._session = session
self.start()
def run(self):
try:
while not self._coord.should_stop():
self._enqueue_next_group()
except Exception as e:
traceback.print_exc()
self._coord.request_stop(e)
def _enqueue_next_group(self):
start = time.time()
# Read a group of examples:
n = self.batch_size
r = self._hp.reduction_factor
if self.static_batches is not None:
batches = self.static_batches
else:
examples = []
for data_dir in self.data_dirs:
if self._hp.initial_data_greedy:
if self._step < self._hp.initial_phase_step and \
any("krbook" in data_dir for data_dir in self.data_dirs):
data_dir = [data_dir for data_dir in self.data_dirs if "krbook" in data_dir][0]
if self._step < self._hp.initial_phase_step:
example = [self._get_next_example(data_dir) \
for _ in range(int(n * self._batches_per_group // len(self.data_dirs)))]
else:
example = [self._get_next_example(data_dir) \
for _ in range(int(n * self._batches_per_group * self.data_ratio[data_dir]))]
examples.extend(example)
examples.sort(key=lambda x: x[-1])
batches = [examples[i:i+n] for i in range(0, len(examples), n)]
self.rng.shuffle(batches)
log('Generated %d batches of size %d in %.03f sec' % (len(batches), n, time.time() - start))
for batch in batches:
feed_dict = dict(zip(self._placeholders, _prepare_batch(batch, r, self.rng, self.data_type)))
self._session.run(self._enqueue_op, feed_dict=feed_dict)
self._step += 1
def _get_next_example(self, data_dir):
'''Loads a single example (input, mel_target, linear_target, cost) from disk'''
data_paths = self.path_dict[data_dir]
while True:
if self._offset[data_dir] >= len(data_paths):
self._offset[data_dir] = 0
if self.data_type == 'train':
self.rng.shuffle(data_paths)
data_path = data_paths[self._offset[data_dir]]
self._offset[data_dir] += 1
try:
if os.path.exists(data_path):
data = np.load(data_path)
else:
continue
except:
remove_file(data_path)
continue
if not self.skip_path_filter:
break
if self.min_n_frame <= data["linear"].shape[0] <= self.max_n_frame and \
len(data["tokens"]) > self.min_tokens:
break
input_data = data['tokens']
mel_target = data['mel']
if 'loss_coeff' in data:
loss_coeff = data['loss_coeff']
else:
loss_coeff = 1
linear_target = data['linear']
return (input_data, loss_coeff, mel_target, linear_target,
self.data_dir_to_id[data_dir], len(linear_target))
def _prepare_batch(batch, reduction_factor, rng, data_type=None):
if data_type == 'train':
rng.shuffle(batch)
inputs = _prepare_inputs([x[0] for x in batch])
input_lengths = np.asarray([len(x[0]) for x in batch], dtype=np.int32)
loss_coeff = np.asarray([x[1] for x in batch], dtype=np.float32)
mel_targets = _prepare_targets([x[2] for x in batch], reduction_factor)
linear_targets = _prepare_targets([x[3] for x in batch], reduction_factor)
if len(batch[0]) == 6:
speaker_id = np.asarray([x[4] for x in batch], dtype=np.int32)
return (inputs, input_lengths, loss_coeff,
mel_targets, linear_targets, speaker_id)
else:
return (inputs, input_lengths, loss_coeff, mel_targets, linear_targets)
def _prepare_inputs(inputs):
max_len = max((len(x) for x in inputs))
return np.stack([_pad_input(x, max_len) for x in inputs])
def _prepare_targets(targets, alignment):
max_len = max((len(t) for t in targets)) + 1
return np.stack([_pad_target(t, _round_up(max_len, alignment)) for t in targets])
def _pad_input(x, length):
return np.pad(x, (0, length - x.shape[0]), mode='constant', constant_values=_pad)
def _pad_target(t, length):
return np.pad(t, [(0, length - t.shape[0]), (0,0)], mode='constant', constant_values=_pad)
def _round_up(x, multiple):
remainder = x % multiple
return x if remainder == 0 else x + multiple - remainder