citra/src/video_core/renderer_opengl/gl_rasterizer.cpp

1393 lines
57 KiB
C++
Raw Normal View History

2015-05-19 06:21:33 +02:00
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2015-06-21 14:40:28 +02:00
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <glad/glad.h>
#include "common/assert.h"
#include "common/color.h"
#include "common/logging/log.h"
2015-06-27 18:56:17 +02:00
#include "common/math_util.h"
#include "common/microprofile.h"
#include "common/vector_math.h"
2015-09-11 13:20:02 +02:00
#include "core/hw/gpu.h"
2016-03-03 04:16:38 +01:00
#include "video_core/pica_state.h"
2017-01-28 22:27:24 +01:00
#include "video_core/regs.h"
#include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_gen.h"
2015-05-19 06:21:33 +02:00
#include "video_core/renderer_opengl/gl_shader_util.h"
#include "video_core/renderer_opengl/pica_to_gl.h"
#include "video_core/renderer_opengl/renderer_opengl.h"
2015-05-19 06:21:33 +02:00
MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(100, 100, 255));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100));
static bool IsPassThroughTevStage(const Pica::TexturingRegs::TevStageConfig& stage) {
using TevStageConfig = Pica::TexturingRegs::TevStageConfig;
return (stage.color_op == TevStageConfig::Operation::Replace &&
stage.alpha_op == TevStageConfig::Operation::Replace &&
stage.color_source1 == TevStageConfig::Source::Previous &&
stage.alpha_source1 == TevStageConfig::Source::Previous &&
stage.color_modifier1 == TevStageConfig::ColorModifier::SourceColor &&
stage.alpha_modifier1 == TevStageConfig::AlphaModifier::SourceAlpha &&
stage.GetColorMultiplier() == 1 && stage.GetAlphaMultiplier() == 1);
2015-05-19 06:21:33 +02:00
}
2016-04-17 00:57:57 +02:00
RasterizerOpenGL::RasterizerOpenGL() : shader_dirty(true) {
// Create sampler objects
2015-10-07 04:28:19 +02:00
for (size_t i = 0; i < texture_samplers.size(); ++i) {
texture_samplers[i].Create();
state.texture_units[i].sampler = texture_samplers[i].sampler.handle;
}
// Generate VBO, VAO and UBO
2015-05-19 06:21:33 +02:00
vertex_buffer.Create();
vertex_array.Create();
uniform_buffer.Create();
2015-05-19 06:21:33 +02:00
state.draw.vertex_array = vertex_array.handle;
state.draw.vertex_buffer = vertex_buffer.handle;
state.draw.uniform_buffer = uniform_buffer.handle;
2015-05-19 06:21:33 +02:00
state.Apply();
// Bind the UBO to binding point 0
glBindBufferBase(GL_UNIFORM_BUFFER, 0, uniform_buffer.handle);
uniform_block_data.dirty = true;
2016-04-17 00:57:57 +02:00
for (unsigned index = 0; index < lighting_luts.size(); index++) {
uniform_block_data.lut_dirty[index] = true;
}
2016-05-21 01:04:57 +02:00
uniform_block_data.fog_lut_dirty = true;
2015-05-19 06:21:33 +02:00
// Set vertex attributes
glVertexAttribPointer(GLShader::ATTRIBUTE_POSITION, 4, GL_FLOAT, GL_FALSE,
sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, position));
glEnableVertexAttribArray(GLShader::ATTRIBUTE_POSITION);
glVertexAttribPointer(GLShader::ATTRIBUTE_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex),
(GLvoid*)offsetof(HardwareVertex, color));
glEnableVertexAttribArray(GLShader::ATTRIBUTE_COLOR);
glVertexAttribPointer(GLShader::ATTRIBUTE_TEXCOORD0, 2, GL_FLOAT, GL_FALSE,
sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, tex_coord0));
glVertexAttribPointer(GLShader::ATTRIBUTE_TEXCOORD1, 2, GL_FLOAT, GL_FALSE,
sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, tex_coord1));
glVertexAttribPointer(GLShader::ATTRIBUTE_TEXCOORD2, 2, GL_FLOAT, GL_FALSE,
sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, tex_coord2));
glEnableVertexAttribArray(GLShader::ATTRIBUTE_TEXCOORD0);
glEnableVertexAttribArray(GLShader::ATTRIBUTE_TEXCOORD1);
glEnableVertexAttribArray(GLShader::ATTRIBUTE_TEXCOORD2);
glVertexAttribPointer(GLShader::ATTRIBUTE_TEXCOORD0_W, 1, GL_FLOAT, GL_FALSE,
sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, tex_coord0_w));
2016-04-19 00:53:42 +02:00
glEnableVertexAttribArray(GLShader::ATTRIBUTE_TEXCOORD0_W);
glVertexAttribPointer(GLShader::ATTRIBUTE_NORMQUAT, 4, GL_FLOAT, GL_FALSE,
sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, normquat));
glEnableVertexAttribArray(GLShader::ATTRIBUTE_NORMQUAT);
glVertexAttribPointer(GLShader::ATTRIBUTE_VIEW, 3, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex),
(GLvoid*)offsetof(HardwareVertex, view));
glEnableVertexAttribArray(GLShader::ATTRIBUTE_VIEW);
2016-04-17 00:57:57 +02:00
// Create render framebuffer
2015-05-19 06:21:33 +02:00
framebuffer.Create();
2016-04-17 00:57:57 +02:00
// Allocate and bind lighting lut textures
for (size_t i = 0; i < lighting_luts.size(); ++i) {
lighting_luts[i].Create();
state.lighting_luts[i].texture_1d = lighting_luts[i].handle;
}
2015-05-19 06:21:33 +02:00
state.Apply();
2016-04-17 00:57:57 +02:00
for (size_t i = 0; i < lighting_luts.size(); ++i) {
glActiveTexture(static_cast<GLenum>(GL_TEXTURE3 + i));
glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA32F, 256, 0, GL_RGBA, GL_FLOAT, nullptr);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}
2015-05-19 06:21:33 +02:00
2016-05-21 01:04:57 +02:00
// Setup the LUT for the fog
{
fog_lut.Create();
state.fog_lut.texture_1d = fog_lut.handle;
}
state.Apply();
glActiveTexture(GL_TEXTURE9);
glTexImage1D(GL_TEXTURE_1D, 0, GL_R32UI, 128, 0, GL_RED_INTEGER, GL_UNSIGNED_INT, nullptr);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
2016-04-17 00:57:57 +02:00
// Sync fixed function OpenGL state
2015-05-19 06:21:33 +02:00
SyncCullMode();
SyncBlendEnabled();
SyncBlendFuncs();
SyncBlendColor();
2015-05-26 00:39:03 +02:00
SyncLogicOp();
2015-05-19 06:21:33 +02:00
SyncStencilTest();
SyncDepthTest();
SyncColorWriteMask();
SyncStencilWriteMask();
SyncDepthWriteMask();
2016-04-17 00:57:57 +02:00
}
2015-05-19 06:21:33 +02:00
RasterizerOpenGL::~RasterizerOpenGL() {}
2015-05-19 06:21:33 +02:00
/**
* This is a helper function to resolve an issue with opposite quaternions being interpolated by
* OpenGL. See below for a detailed description of this issue (yuriks):
*
* For any rotation, there are two quaternions Q, and -Q, that represent the same rotation. If you
* interpolate two quaternions that are opposite, instead of going from one rotation to another
* using the shortest path, you'll go around the longest path. You can test if two quaternions are
* opposite by checking if Dot(Q1, W2) < 0. In that case, you can flip either of them, therefore
* making Dot(-Q1, W2) positive.
*
* NOTE: This solution corrects this issue per-vertex before passing the quaternions to OpenGL. This
* should be correct for nearly all cases, however a more correct implementation (but less trivial
* and perhaps unnecessary) would be to handle this per-fragment, by interpolating the quaternions
* manually using two Lerps, and doing this correction before each Lerp.
*/
static bool AreQuaternionsOpposite(Math::Vec4<Pica::float24> qa, Math::Vec4<Pica::float24> qb) {
Math::Vec4f a{qa.x.ToFloat32(), qa.y.ToFloat32(), qa.z.ToFloat32(), qa.w.ToFloat32()};
Math::Vec4f b{qb.x.ToFloat32(), qb.y.ToFloat32(), qb.z.ToFloat32(), qb.w.ToFloat32()};
return (Math::Dot(a, b) < 0.f);
}
void RasterizerOpenGL::AddTriangle(const Pica::Shader::OutputVertex& v0,
const Pica::Shader::OutputVertex& v1,
const Pica::Shader::OutputVertex& v2) {
vertex_batch.emplace_back(v0, false);
vertex_batch.emplace_back(v1, AreQuaternionsOpposite(v0.quat, v1.quat));
vertex_batch.emplace_back(v2, AreQuaternionsOpposite(v0.quat, v2.quat));
2015-05-19 06:21:33 +02:00
}
void RasterizerOpenGL::DrawTriangles() {
if (vertex_batch.empty())
return;
MICROPROFILE_SCOPE(OpenGL_Drawing);
2016-04-17 00:57:57 +02:00
const auto& regs = Pica::g_state.regs;
// Sync and bind the framebuffer surfaces
CachedSurface* color_surface;
CachedSurface* depth_surface;
MathUtil::Rectangle<int> rect;
std::tie(color_surface, depth_surface, rect) =
res_cache.GetFramebufferSurfaces(regs.framebuffer.framebuffer);
2016-04-17 00:57:57 +02:00
state.draw.draw_framebuffer = framebuffer.handle;
state.Apply();
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
color_surface != nullptr ? color_surface->texture.handle : 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
depth_surface != nullptr ? depth_surface->texture.handle : 0, 0);
bool has_stencil =
regs.framebuffer.framebuffer.depth_format == Pica::FramebufferRegs::DepthFormat::D24S8;
glFramebufferTexture2D(
GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
(has_stencil && depth_surface != nullptr) ? depth_surface->texture.handle : 0, 0);
2016-04-17 00:57:57 +02:00
// Sync the viewport
// These registers hold half-width and half-height, so must be multiplied by 2
GLsizei viewport_width =
(GLsizei)Pica::float24::FromRaw(regs.rasterizer.viewport_size_x).ToFloat32() * 2;
GLsizei viewport_height =
(GLsizei)Pica::float24::FromRaw(regs.rasterizer.viewport_size_y).ToFloat32() * 2;
2016-04-17 00:57:57 +02:00
glViewport(
(GLint)(rect.left + regs.rasterizer.viewport_corner.x * color_surface->res_scale_width),
(GLint)(rect.bottom + regs.rasterizer.viewport_corner.y * color_surface->res_scale_height),
(GLsizei)(viewport_width * color_surface->res_scale_width),
(GLsizei)(viewport_height * color_surface->res_scale_height));
2016-04-17 00:57:57 +02:00
if (uniform_block_data.data.framebuffer_scale[0] != color_surface->res_scale_width ||
uniform_block_data.data.framebuffer_scale[1] != color_surface->res_scale_height) {
uniform_block_data.data.framebuffer_scale[0] = color_surface->res_scale_width;
uniform_block_data.data.framebuffer_scale[1] = color_surface->res_scale_height;
uniform_block_data.dirty = true;
}
// Scissor checks are window-, not viewport-relative, which means that if the cached texture
// sub-rect changes, the scissor bounds also need to be updated.
GLint scissor_x1 = static_cast<GLint>(
rect.left + regs.rasterizer.scissor_test.x1 * color_surface->res_scale_width);
GLint scissor_y1 = static_cast<GLint>(
rect.bottom + regs.rasterizer.scissor_test.y1 * color_surface->res_scale_height);
// x2, y2 have +1 added to cover the entire pixel area, otherwise you might get cracks when
// scaling or doing multisampling.
GLint scissor_x2 = static_cast<GLint>(
rect.left + (regs.rasterizer.scissor_test.x2 + 1) * color_surface->res_scale_width);
GLint scissor_y2 = static_cast<GLint>(
rect.bottom + (regs.rasterizer.scissor_test.y2 + 1) * color_surface->res_scale_height);
if (uniform_block_data.data.scissor_x1 != scissor_x1 ||
uniform_block_data.data.scissor_x2 != scissor_x2 ||
uniform_block_data.data.scissor_y1 != scissor_y1 ||
uniform_block_data.data.scissor_y2 != scissor_y2) {
uniform_block_data.data.scissor_x1 = scissor_x1;
uniform_block_data.data.scissor_x2 = scissor_x2;
uniform_block_data.data.scissor_y1 = scissor_y1;
uniform_block_data.data.scissor_y2 = scissor_y2;
uniform_block_data.dirty = true;
}
2016-04-17 00:57:57 +02:00
// Sync and bind the texture surfaces
const auto pica_textures = regs.texturing.GetTextures();
2016-04-17 00:57:57 +02:00
for (unsigned texture_index = 0; texture_index < pica_textures.size(); ++texture_index) {
const auto& texture = pica_textures[texture_index];
if (texture.enabled) {
texture_samplers[texture_index].SyncWithConfig(texture.config);
CachedSurface* surface = res_cache.GetTextureSurface(texture);
if (surface != nullptr) {
state.texture_units[texture_index].texture_2d = surface->texture.handle;
} else {
// Can occur when texture addr is null or its memory is unmapped/invalid
state.texture_units[texture_index].texture_2d = 0;
}
} else {
state.texture_units[texture_index].texture_2d = 0;
}
}
2015-05-19 06:21:33 +02:00
2016-04-17 00:57:57 +02:00
// Sync and bind the shader
if (shader_dirty) {
SetShader();
2016-04-17 00:57:57 +02:00
shader_dirty = false;
}
2016-04-17 00:57:57 +02:00
// Sync the lighting luts
for (unsigned index = 0; index < lighting_luts.size(); index++) {
if (uniform_block_data.lut_dirty[index]) {
SyncLightingLUT(index);
uniform_block_data.lut_dirty[index] = false;
}
}
2016-05-21 01:04:57 +02:00
// Sync the fog lut
if (uniform_block_data.fog_lut_dirty) {
SyncFogLUT();
uniform_block_data.fog_lut_dirty = false;
}
2016-04-17 00:57:57 +02:00
// Sync the uniform data
if (uniform_block_data.dirty) {
glBufferData(GL_UNIFORM_BUFFER, sizeof(UniformData), &uniform_block_data.data,
GL_STATIC_DRAW);
uniform_block_data.dirty = false;
}
2016-04-17 00:57:57 +02:00
state.Apply();
// Draw the vertex batch
glBufferData(GL_ARRAY_BUFFER, vertex_batch.size() * sizeof(HardwareVertex), vertex_batch.data(),
GL_STREAM_DRAW);
2015-05-19 06:21:33 +02:00
glDrawArrays(GL_TRIANGLES, 0, (GLsizei)vertex_batch.size());
2016-04-17 00:57:57 +02:00
// Mark framebuffer surfaces as dirty
// TODO: Restrict invalidation area to the viewport
if (color_surface != nullptr) {
color_surface->dirty = true;
res_cache.FlushRegion(color_surface->addr, color_surface->size, color_surface, true);
}
if (depth_surface != nullptr) {
depth_surface->dirty = true;
res_cache.FlushRegion(depth_surface->addr, depth_surface->size, depth_surface, true);
}
2016-04-17 00:57:57 +02:00
vertex_batch.clear();
2015-05-19 06:21:33 +02:00
2016-04-17 00:57:57 +02:00
// Unbind textures for potential future use as framebuffer attachments
for (unsigned texture_index = 0; texture_index < pica_textures.size(); ++texture_index) {
state.texture_units[texture_index].texture_2d = 0;
}
state.Apply();
2015-05-19 06:21:33 +02:00
}
void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) {
const auto& regs = Pica::g_state.regs;
switch (id) {
2015-05-19 06:21:33 +02:00
// Culling
case PICA_REG_INDEX(rasterizer.cull_mode):
2015-05-19 06:21:33 +02:00
SyncCullMode();
break;
2016-01-04 00:46:54 +01:00
// Depth modifiers
case PICA_REG_INDEX(rasterizer.viewport_depth_range):
SyncDepthScale();
break;
case PICA_REG_INDEX(rasterizer.viewport_depth_near_plane):
SyncDepthOffset();
2016-01-04 00:46:54 +01:00
break;
// Depth buffering
case PICA_REG_INDEX(rasterizer.depthmap_enable):
shader_dirty = true;
break;
2015-05-19 06:21:33 +02:00
// Blending
case PICA_REG_INDEX(framebuffer.output_merger.alphablend_enable):
2015-05-19 06:21:33 +02:00
SyncBlendEnabled();
break;
case PICA_REG_INDEX(framebuffer.output_merger.alpha_blending):
2015-05-19 06:21:33 +02:00
SyncBlendFuncs();
break;
case PICA_REG_INDEX(framebuffer.output_merger.blend_const):
2015-05-19 06:21:33 +02:00
SyncBlendColor();
break;
2016-05-21 01:04:57 +02:00
// Fog state
case PICA_REG_INDEX(texturing.fog_color):
2016-05-21 01:04:57 +02:00
SyncFogColor();
break;
case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[0], 0xe8):
case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[1], 0xe9):
case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[2], 0xea):
case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[3], 0xeb):
case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[4], 0xec):
case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[5], 0xed):
case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[6], 0xee):
case PICA_REG_INDEX_WORKAROUND(texturing.fog_lut_data[7], 0xef):
2016-05-21 01:04:57 +02:00
uniform_block_data.fog_lut_dirty = true;
break;
2015-05-19 06:21:33 +02:00
// Alpha test
case PICA_REG_INDEX(framebuffer.output_merger.alpha_test):
2015-05-19 06:21:33 +02:00
SyncAlphaTest();
2016-04-17 00:57:57 +02:00
shader_dirty = true;
2015-05-19 06:21:33 +02:00
break;
// Sync GL stencil test + stencil write mask
// (Pica stencil test function register also contains a stencil write mask)
case PICA_REG_INDEX(framebuffer.output_merger.stencil_test.raw_func):
SyncStencilTest();
SyncStencilWriteMask();
break;
case PICA_REG_INDEX(framebuffer.output_merger.stencil_test.raw_op):
case PICA_REG_INDEX(framebuffer.framebuffer.depth_format):
2015-05-19 06:21:33 +02:00
SyncStencilTest();
break;
// Sync GL depth test + depth and color write mask
// (Pica depth test function register also contains a depth and color write mask)
case PICA_REG_INDEX(framebuffer.output_merger.depth_test_enable):
2015-05-19 06:21:33 +02:00
SyncDepthTest();
SyncDepthWriteMask();
SyncColorWriteMask();
2015-05-19 06:21:33 +02:00
break;
// Sync GL depth and stencil write mask
// (This is a dedicated combined depth / stencil write-enable register)
case PICA_REG_INDEX(framebuffer.framebuffer.allow_depth_stencil_write):
SyncDepthWriteMask();
SyncStencilWriteMask();
break;
// Sync GL color write mask
// (This is a dedicated color write-enable register)
case PICA_REG_INDEX(framebuffer.framebuffer.allow_color_write):
SyncColorWriteMask();
break;
2015-12-02 19:23:51 +01:00
// Scissor test
case PICA_REG_INDEX(rasterizer.scissor_test.mode):
2015-12-02 19:23:51 +01:00
shader_dirty = true;
break;
2015-05-26 00:39:03 +02:00
// Logic op
case PICA_REG_INDEX(framebuffer.output_merger.logic_op):
2015-05-26 00:39:03 +02:00
SyncLogicOp();
break;
2016-04-19 00:53:42 +02:00
// Texture 0 type
case PICA_REG_INDEX(texturing.texture0.type):
2016-04-19 00:53:42 +02:00
shader_dirty = true;
break;
// TEV stages
2016-05-21 01:04:57 +02:00
// (This also syncs fog_mode and fog_flip which are part of tev_combiner_buffer_input)
case PICA_REG_INDEX(texturing.tev_stage0.color_source1):
case PICA_REG_INDEX(texturing.tev_stage0.color_modifier1):
case PICA_REG_INDEX(texturing.tev_stage0.color_op):
case PICA_REG_INDEX(texturing.tev_stage0.color_scale):
case PICA_REG_INDEX(texturing.tev_stage1.color_source1):
case PICA_REG_INDEX(texturing.tev_stage1.color_modifier1):
case PICA_REG_INDEX(texturing.tev_stage1.color_op):
case PICA_REG_INDEX(texturing.tev_stage1.color_scale):
case PICA_REG_INDEX(texturing.tev_stage2.color_source1):
case PICA_REG_INDEX(texturing.tev_stage2.color_modifier1):
case PICA_REG_INDEX(texturing.tev_stage2.color_op):
case PICA_REG_INDEX(texturing.tev_stage2.color_scale):
case PICA_REG_INDEX(texturing.tev_stage3.color_source1):
case PICA_REG_INDEX(texturing.tev_stage3.color_modifier1):
case PICA_REG_INDEX(texturing.tev_stage3.color_op):
case PICA_REG_INDEX(texturing.tev_stage3.color_scale):
case PICA_REG_INDEX(texturing.tev_stage4.color_source1):
case PICA_REG_INDEX(texturing.tev_stage4.color_modifier1):
case PICA_REG_INDEX(texturing.tev_stage4.color_op):
case PICA_REG_INDEX(texturing.tev_stage4.color_scale):
case PICA_REG_INDEX(texturing.tev_stage5.color_source1):
case PICA_REG_INDEX(texturing.tev_stage5.color_modifier1):
case PICA_REG_INDEX(texturing.tev_stage5.color_op):
case PICA_REG_INDEX(texturing.tev_stage5.color_scale):
case PICA_REG_INDEX(texturing.tev_combiner_buffer_input):
2016-04-17 00:57:57 +02:00
shader_dirty = true;
2015-05-19 06:21:33 +02:00
break;
case PICA_REG_INDEX(texturing.tev_stage0.const_r):
SyncTevConstColor(0, regs.texturing.tev_stage0);
2015-05-19 06:21:33 +02:00
break;
case PICA_REG_INDEX(texturing.tev_stage1.const_r):
SyncTevConstColor(1, regs.texturing.tev_stage1);
2015-05-19 06:21:33 +02:00
break;
case PICA_REG_INDEX(texturing.tev_stage2.const_r):
SyncTevConstColor(2, regs.texturing.tev_stage2);
2015-05-19 06:21:33 +02:00
break;
case PICA_REG_INDEX(texturing.tev_stage3.const_r):
SyncTevConstColor(3, regs.texturing.tev_stage3);
2015-05-19 06:21:33 +02:00
break;
case PICA_REG_INDEX(texturing.tev_stage4.const_r):
SyncTevConstColor(4, regs.texturing.tev_stage4);
2015-05-19 06:21:33 +02:00
break;
case PICA_REG_INDEX(texturing.tev_stage5.const_r):
SyncTevConstColor(5, regs.texturing.tev_stage5);
2015-05-19 06:21:33 +02:00
break;
2015-05-19 06:21:33 +02:00
// TEV combiner buffer color
case PICA_REG_INDEX(texturing.tev_combiner_buffer_color):
2015-05-19 06:21:33 +02:00
SyncCombinerColor();
break;
// Fragment lighting switches
case PICA_REG_INDEX(lighting.disable):
case PICA_REG_INDEX(lighting.max_light_index):
case PICA_REG_INDEX(lighting.config0):
case PICA_REG_INDEX(lighting.config1):
case PICA_REG_INDEX(lighting.abs_lut_input):
case PICA_REG_INDEX(lighting.lut_input):
case PICA_REG_INDEX(lighting.lut_scale):
case PICA_REG_INDEX(lighting.light_enable):
break;
// Fragment lighting specular 0 color
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].specular_0, 0x140 + 0 * 0x10):
SyncLightSpecular0(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].specular_0, 0x140 + 1 * 0x10):
SyncLightSpecular0(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].specular_0, 0x140 + 2 * 0x10):
SyncLightSpecular0(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].specular_0, 0x140 + 3 * 0x10):
SyncLightSpecular0(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].specular_0, 0x140 + 4 * 0x10):
SyncLightSpecular0(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].specular_0, 0x140 + 5 * 0x10):
SyncLightSpecular0(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].specular_0, 0x140 + 6 * 0x10):
SyncLightSpecular0(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].specular_0, 0x140 + 7 * 0x10):
SyncLightSpecular0(7);
break;
// Fragment lighting specular 1 color
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].specular_1, 0x141 + 0 * 0x10):
SyncLightSpecular1(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].specular_1, 0x141 + 1 * 0x10):
SyncLightSpecular1(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].specular_1, 0x141 + 2 * 0x10):
SyncLightSpecular1(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].specular_1, 0x141 + 3 * 0x10):
SyncLightSpecular1(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].specular_1, 0x141 + 4 * 0x10):
SyncLightSpecular1(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].specular_1, 0x141 + 5 * 0x10):
SyncLightSpecular1(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].specular_1, 0x141 + 6 * 0x10):
SyncLightSpecular1(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].specular_1, 0x141 + 7 * 0x10):
SyncLightSpecular1(7);
break;
// Fragment lighting diffuse color
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].diffuse, 0x142 + 0 * 0x10):
SyncLightDiffuse(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].diffuse, 0x142 + 1 * 0x10):
SyncLightDiffuse(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].diffuse, 0x142 + 2 * 0x10):
SyncLightDiffuse(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].diffuse, 0x142 + 3 * 0x10):
SyncLightDiffuse(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].diffuse, 0x142 + 4 * 0x10):
SyncLightDiffuse(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].diffuse, 0x142 + 5 * 0x10):
SyncLightDiffuse(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].diffuse, 0x142 + 6 * 0x10):
SyncLightDiffuse(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].diffuse, 0x142 + 7 * 0x10):
SyncLightDiffuse(7);
break;
// Fragment lighting ambient color
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].ambient, 0x143 + 0 * 0x10):
SyncLightAmbient(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].ambient, 0x143 + 1 * 0x10):
SyncLightAmbient(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].ambient, 0x143 + 2 * 0x10):
SyncLightAmbient(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].ambient, 0x143 + 3 * 0x10):
SyncLightAmbient(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].ambient, 0x143 + 4 * 0x10):
SyncLightAmbient(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].ambient, 0x143 + 5 * 0x10):
SyncLightAmbient(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].ambient, 0x143 + 6 * 0x10):
SyncLightAmbient(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].ambient, 0x143 + 7 * 0x10):
SyncLightAmbient(7);
break;
// Fragment lighting position
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].x, 0x144 + 0 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].z, 0x145 + 0 * 0x10):
SyncLightPosition(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].x, 0x144 + 1 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].z, 0x145 + 1 * 0x10):
SyncLightPosition(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].x, 0x144 + 2 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].z, 0x145 + 2 * 0x10):
SyncLightPosition(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].x, 0x144 + 3 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].z, 0x145 + 3 * 0x10):
SyncLightPosition(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].x, 0x144 + 4 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].z, 0x145 + 4 * 0x10):
SyncLightPosition(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].x, 0x144 + 5 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].z, 0x145 + 5 * 0x10):
SyncLightPosition(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].x, 0x144 + 6 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].z, 0x145 + 6 * 0x10):
SyncLightPosition(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].x, 0x144 + 7 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].z, 0x145 + 7 * 0x10):
SyncLightPosition(7);
break;
// Fragment lighting light source config
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].config, 0x149 + 0 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].config, 0x149 + 1 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].config, 0x149 + 2 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].config, 0x149 + 3 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].config, 0x149 + 4 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].config, 0x149 + 5 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].config, 0x149 + 6 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].config, 0x149 + 7 * 0x10):
shader_dirty = true;
break;
// Fragment lighting distance attenuation bias
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].dist_atten_bias, 0x014A + 0 * 0x10):
SyncLightDistanceAttenuationBias(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].dist_atten_bias, 0x014A + 1 * 0x10):
SyncLightDistanceAttenuationBias(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].dist_atten_bias, 0x014A + 2 * 0x10):
SyncLightDistanceAttenuationBias(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].dist_atten_bias, 0x014A + 3 * 0x10):
SyncLightDistanceAttenuationBias(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].dist_atten_bias, 0x014A + 4 * 0x10):
SyncLightDistanceAttenuationBias(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].dist_atten_bias, 0x014A + 5 * 0x10):
SyncLightDistanceAttenuationBias(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].dist_atten_bias, 0x014A + 6 * 0x10):
SyncLightDistanceAttenuationBias(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].dist_atten_bias, 0x014A + 7 * 0x10):
SyncLightDistanceAttenuationBias(7);
break;
// Fragment lighting distance attenuation scale
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].dist_atten_scale, 0x014B + 0 * 0x10):
SyncLightDistanceAttenuationScale(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].dist_atten_scale, 0x014B + 1 * 0x10):
SyncLightDistanceAttenuationScale(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].dist_atten_scale, 0x014B + 2 * 0x10):
SyncLightDistanceAttenuationScale(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].dist_atten_scale, 0x014B + 3 * 0x10):
SyncLightDistanceAttenuationScale(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].dist_atten_scale, 0x014B + 4 * 0x10):
SyncLightDistanceAttenuationScale(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].dist_atten_scale, 0x014B + 5 * 0x10):
SyncLightDistanceAttenuationScale(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].dist_atten_scale, 0x014B + 6 * 0x10):
SyncLightDistanceAttenuationScale(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].dist_atten_scale, 0x014B + 7 * 0x10):
SyncLightDistanceAttenuationScale(7);
break;
// Fragment lighting global ambient color (emission + ambient * ambient)
case PICA_REG_INDEX_WORKAROUND(lighting.global_ambient, 0x1c0):
SyncGlobalAmbient();
break;
// Fragment lighting lookup tables
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[0], 0x1c8):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[1], 0x1c9):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[2], 0x1ca):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[3], 0x1cb):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[4], 0x1cc):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[5], 0x1cd):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[6], 0x1ce):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[7], 0x1cf): {
auto& lut_config = regs.lighting.lut_config;
uniform_block_data.lut_dirty[lut_config.type / 4] = true;
break;
}
2015-05-19 06:21:33 +02:00
}
}
2016-04-17 00:57:57 +02:00
void RasterizerOpenGL::FlushAll() {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
2016-04-17 00:57:57 +02:00
res_cache.FlushAll();
}
void RasterizerOpenGL::FlushRegion(PAddr addr, u32 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
2016-04-17 00:57:57 +02:00
res_cache.FlushRegion(addr, size, nullptr, false);
}
2016-04-17 00:57:57 +02:00
void RasterizerOpenGL::FlushAndInvalidateRegion(PAddr addr, u32 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
2016-04-17 00:57:57 +02:00
res_cache.FlushRegion(addr, size, nullptr, true);
}
2015-05-19 06:21:33 +02:00
2016-04-17 00:57:57 +02:00
bool RasterizerOpenGL::AccelerateDisplayTransfer(const GPU::Regs::DisplayTransferConfig& config) {
MICROPROFILE_SCOPE(OpenGL_Blits);
2015-05-19 06:21:33 +02:00
2016-04-17 00:57:57 +02:00
CachedSurface src_params;
src_params.addr = config.GetPhysicalInputAddress();
// It's important to use the correct source input width to properly skip over parts of the input
// image which will be cropped from the output but still affect the stride of the input image.
src_params.width = config.input_width;
// Using the output's height is fine because we don't read or skip over the remaining part of
// the image, and it allows for smaller texture cache lookup rectangles.
2016-04-17 00:57:57 +02:00
src_params.height = config.output_height;
src_params.is_tiled = !config.input_linear;
src_params.pixel_format = CachedSurface::PixelFormatFromGPUPixelFormat(config.input_format);
CachedSurface dst_params;
dst_params.addr = config.GetPhysicalOutputAddress();
dst_params.width =
config.scaling != config.NoScale ? config.output_width / 2 : config.output_width.Value();
dst_params.height =
config.scaling == config.ScaleXY ? config.output_height / 2 : config.output_height.Value();
2016-04-17 00:57:57 +02:00
dst_params.is_tiled = config.input_linear != config.dont_swizzle;
dst_params.pixel_format = CachedSurface::PixelFormatFromGPUPixelFormat(config.output_format);
MathUtil::Rectangle<int> src_rect;
CachedSurface* src_surface = res_cache.GetSurfaceRect(src_params, false, true, src_rect);
if (src_surface == nullptr) {
return false;
}
// Adjust the source rectangle to take into account parts of the input lines being cropped
if (config.input_width > config.output_width) {
src_rect.right -= static_cast<int>((config.input_width - config.output_width) *
src_surface->res_scale_width);
}
2016-04-17 00:57:57 +02:00
// Require destination surface to have same resolution scale as source to preserve scaling
dst_params.res_scale_width = src_surface->res_scale_width;
dst_params.res_scale_height = src_surface->res_scale_height;
MathUtil::Rectangle<int> dst_rect;
CachedSurface* dst_surface = res_cache.GetSurfaceRect(dst_params, true, false, dst_rect);
if (dst_surface == nullptr) {
return false;
}
// Don't accelerate if the src and dst surfaces are the same
if (src_surface == dst_surface) {
return false;
}
if (config.flip_vertically) {
std::swap(dst_rect.top, dst_rect.bottom);
}
if (!res_cache.TryBlitSurfaces(src_surface, src_rect, dst_surface, dst_rect)) {
return false;
}
u32 dst_size = dst_params.width * dst_params.height *
CachedSurface::GetFormatBpp(dst_params.pixel_format) / 8;
2016-04-17 00:57:57 +02:00
dst_surface->dirty = true;
res_cache.FlushRegion(config.GetPhysicalOutputAddress(), dst_size, dst_surface, true);
return true;
2015-05-19 06:21:33 +02:00
}
bool RasterizerOpenGL::AccelerateTextureCopy(const GPU::Regs::DisplayTransferConfig& config) {
// TODO(tfarley): Try to hardware accelerate this
return false;
}
2016-04-17 00:57:57 +02:00
bool RasterizerOpenGL::AccelerateFill(const GPU::Regs::MemoryFillConfig& config) {
MICROPROFILE_SCOPE(OpenGL_Blits);
2016-04-17 00:57:57 +02:00
using PixelFormat = CachedSurface::PixelFormat;
using SurfaceType = CachedSurface::SurfaceType;
CachedSurface* dst_surface = res_cache.TryGetFillSurface(config);
if (dst_surface == nullptr) {
return false;
}
OpenGLState cur_state = OpenGLState::GetCurState();
SurfaceType dst_type = CachedSurface::GetFormatType(dst_surface->pixel_format);
2016-04-17 00:57:57 +02:00
GLuint old_fb = cur_state.draw.draw_framebuffer;
cur_state.draw.draw_framebuffer = framebuffer.handle;
// TODO: When scissor test is implemented, need to disable scissor test in cur_state here so
// Clear call isn't affected
2016-04-17 00:57:57 +02:00
cur_state.Apply();
2015-05-19 06:21:33 +02:00
2016-04-17 00:57:57 +02:00
if (dst_type == SurfaceType::Color || dst_type == SurfaceType::Texture) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
dst_surface->texture.handle, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
2015-05-19 06:21:33 +02:00
2016-04-17 00:57:57 +02:00
GLfloat color_values[4] = {0.0f, 0.0f, 0.0f, 0.0f};
// TODO: Handle additional pixel format and fill value size combinations to accelerate more
// cases
// For instance, checking if fill value's bytes/bits repeat to allow filling
// I8/A8/I4/A4/...
2016-04-17 00:57:57 +02:00
// Currently only handles formats that are multiples of the fill value size
if (config.fill_24bit) {
switch (dst_surface->pixel_format) {
case PixelFormat::RGB8:
color_values[0] = config.value_24bit_r / 255.0f;
color_values[1] = config.value_24bit_g / 255.0f;
color_values[2] = config.value_24bit_b / 255.0f;
break;
default:
return false;
}
} else if (config.fill_32bit) {
u32 value = config.value_32bit;
switch (dst_surface->pixel_format) {
case PixelFormat::RGBA8:
color_values[0] = (value >> 24) / 255.0f;
color_values[1] = ((value >> 16) & 0xFF) / 255.0f;
color_values[2] = ((value >> 8) & 0xFF) / 255.0f;
color_values[3] = (value & 0xFF) / 255.0f;
break;
default:
return false;
}
} else {
u16 value_16bit = config.value_16bit.Value();
Math::Vec4<u8> color;
switch (dst_surface->pixel_format) {
case PixelFormat::RGBA8:
color_values[0] = (value_16bit >> 8) / 255.0f;
color_values[1] = (value_16bit & 0xFF) / 255.0f;
color_values[2] = color_values[0];
color_values[3] = color_values[1];
break;
case PixelFormat::RGB5A1:
color = Color::DecodeRGB5A1((const u8*)&value_16bit);
color_values[0] = color[0] / 31.0f;
color_values[1] = color[1] / 31.0f;
color_values[2] = color[2] / 31.0f;
color_values[3] = color[3];
break;
case PixelFormat::RGB565:
color = Color::DecodeRGB565((const u8*)&value_16bit);
color_values[0] = color[0] / 31.0f;
color_values[1] = color[1] / 63.0f;
color_values[2] = color[2] / 31.0f;
break;
case PixelFormat::RGBA4:
color = Color::DecodeRGBA4((const u8*)&value_16bit);
color_values[0] = color[0] / 15.0f;
color_values[1] = color[1] / 15.0f;
color_values[2] = color[2] / 15.0f;
color_values[3] = color[3] / 15.0f;
break;
case PixelFormat::IA8:
case PixelFormat::RG8:
color_values[0] = (value_16bit >> 8) / 255.0f;
color_values[1] = (value_16bit & 0xFF) / 255.0f;
break;
default:
return false;
}
}
2016-12-19 19:06:35 +01:00
cur_state.color_mask.red_enabled = GL_TRUE;
cur_state.color_mask.green_enabled = GL_TRUE;
cur_state.color_mask.blue_enabled = GL_TRUE;
cur_state.color_mask.alpha_enabled = GL_TRUE;
2016-04-17 00:57:57 +02:00
cur_state.Apply();
glClearBufferfv(GL_COLOR, 0, color_values);
} else if (dst_type == SurfaceType::Depth) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
dst_surface->texture.handle, 0);
2016-04-17 00:57:57 +02:00
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
GLfloat value_float;
if (dst_surface->pixel_format == CachedSurface::PixelFormat::D16) {
value_float = config.value_32bit / 65535.0f; // 2^16 - 1
} else if (dst_surface->pixel_format == CachedSurface::PixelFormat::D24) {
value_float = config.value_32bit / 16777215.0f; // 2^24 - 1
}
cur_state.depth.write_mask = GL_TRUE;
2016-04-17 00:57:57 +02:00
cur_state.Apply();
glClearBufferfv(GL_DEPTH, 0, &value_float);
} else if (dst_type == SurfaceType::DepthStencil) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
dst_surface->texture.handle, 0);
2016-04-17 00:57:57 +02:00
GLfloat value_float = (config.value_32bit & 0xFFFFFF) / 16777215.0f; // 2^24 - 1
GLint value_int = (config.value_32bit >> 24);
cur_state.depth.write_mask = GL_TRUE;
cur_state.stencil.write_mask = 0xFF;
2016-04-17 00:57:57 +02:00
cur_state.Apply();
glClearBufferfi(GL_DEPTH_STENCIL, 0, value_float, value_int);
}
2015-05-19 06:21:33 +02:00
2016-04-17 00:57:57 +02:00
cur_state.draw.draw_framebuffer = old_fb;
// TODO: Return scissor test to previous value when scissor test is implemented
cur_state.Apply();
2015-05-19 06:21:33 +02:00
2016-04-17 00:57:57 +02:00
dst_surface->dirty = true;
res_cache.FlushRegion(dst_surface->addr, dst_surface->size, dst_surface, true);
return true;
}
bool RasterizerOpenGL::AccelerateDisplay(const GPU::Regs::FramebufferConfig& config,
PAddr framebuffer_addr, u32 pixel_stride,
ScreenInfo& screen_info) {
2016-04-17 00:57:57 +02:00
if (framebuffer_addr == 0) {
return false;
}
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
2016-04-17 00:57:57 +02:00
CachedSurface src_params;
src_params.addr = framebuffer_addr;
src_params.width = config.width;
src_params.height = config.height;
src_params.pixel_stride = pixel_stride;
2016-04-17 00:57:57 +02:00
src_params.is_tiled = false;
src_params.pixel_format = CachedSurface::PixelFormatFromGPUPixelFormat(config.color_format);
MathUtil::Rectangle<int> src_rect;
CachedSurface* src_surface = res_cache.GetSurfaceRect(src_params, false, true, src_rect);
if (src_surface == nullptr) {
return false;
}
u32 scaled_width = src_surface->GetScaledWidth();
u32 scaled_height = src_surface->GetScaledHeight();
screen_info.display_texcoords = MathUtil::Rectangle<float>(
(float)src_rect.top / (float)scaled_height, (float)src_rect.left / (float)scaled_width,
(float)src_rect.bottom / (float)scaled_height, (float)src_rect.right / (float)scaled_width);
2016-04-17 00:57:57 +02:00
screen_info.display_texture = src_surface->texture.handle;
return true;
2015-05-19 06:21:33 +02:00
}
void RasterizerOpenGL::SamplerInfo::Create() {
sampler.Create();
mag_filter = min_filter = TextureConfig::Linear;
wrap_s = wrap_t = TextureConfig::Repeat;
border_color = 0;
glSamplerParameteri(sampler.handle, GL_TEXTURE_MIN_FILTER,
GL_LINEAR); // default is GL_LINEAR_MIPMAP_LINEAR
// Other attributes have correct defaults
}
void RasterizerOpenGL::SamplerInfo::SyncWithConfig(
const Pica::TexturingRegs::TextureConfig& config) {
GLuint s = sampler.handle;
if (mag_filter != config.mag_filter) {
mag_filter = config.mag_filter;
glSamplerParameteri(s, GL_TEXTURE_MAG_FILTER, PicaToGL::TextureFilterMode(mag_filter));
}
if (min_filter != config.min_filter) {
min_filter = config.min_filter;
glSamplerParameteri(s, GL_TEXTURE_MIN_FILTER, PicaToGL::TextureFilterMode(min_filter));
}
if (wrap_s != config.wrap_s) {
wrap_s = config.wrap_s;
glSamplerParameteri(s, GL_TEXTURE_WRAP_S, PicaToGL::WrapMode(wrap_s));
}
if (wrap_t != config.wrap_t) {
wrap_t = config.wrap_t;
glSamplerParameteri(s, GL_TEXTURE_WRAP_T, PicaToGL::WrapMode(wrap_t));
}
if (wrap_s == TextureConfig::ClampToBorder || wrap_t == TextureConfig::ClampToBorder) {
if (border_color != config.border_color.raw) {
border_color = config.border_color.raw;
auto gl_color = PicaToGL::ColorRGBA8(border_color);
glSamplerParameterfv(s, GL_TEXTURE_BORDER_COLOR, gl_color.data());
}
}
}
void RasterizerOpenGL::SetShader() {
PicaShaderConfig config = PicaShaderConfig::CurrentConfig();
std::unique_ptr<PicaShader> shader = std::make_unique<PicaShader>();
// Find (or generate) the GLSL shader for the current TEV state
auto cached_shader = shader_cache.find(config);
if (cached_shader != shader_cache.end()) {
current_shader = cached_shader->second.get();
state.draw.shader_program = current_shader->shader.handle;
state.Apply();
} else {
LOG_DEBUG(Render_OpenGL, "Creating new shader");
shader->shader.Create(GLShader::GenerateVertexShader().c_str(),
GLShader::GenerateFragmentShader(config).c_str());
state.draw.shader_program = shader->shader.handle;
state.Apply();
// Set the texture samplers to correspond to different texture units
GLuint uniform_tex = glGetUniformLocation(shader->shader.handle, "tex[0]");
if (uniform_tex != -1) {
glUniform1i(uniform_tex, 0);
}
uniform_tex = glGetUniformLocation(shader->shader.handle, "tex[1]");
if (uniform_tex != -1) {
glUniform1i(uniform_tex, 1);
}
uniform_tex = glGetUniformLocation(shader->shader.handle, "tex[2]");
if (uniform_tex != -1) {
glUniform1i(uniform_tex, 2);
}
// Set the texture samplers to correspond to different lookup table texture units
GLuint uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[0]");
if (uniform_lut != -1) {
glUniform1i(uniform_lut, 3);
}
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[1]");
if (uniform_lut != -1) {
glUniform1i(uniform_lut, 4);
}
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[2]");
if (uniform_lut != -1) {
glUniform1i(uniform_lut, 5);
}
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[3]");
if (uniform_lut != -1) {
glUniform1i(uniform_lut, 6);
}
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[4]");
if (uniform_lut != -1) {
glUniform1i(uniform_lut, 7);
}
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[5]");
if (uniform_lut != -1) {
glUniform1i(uniform_lut, 8);
}
2016-05-21 01:04:57 +02:00
GLuint uniform_fog_lut = glGetUniformLocation(shader->shader.handle, "fog_lut");
if (uniform_fog_lut != -1) {
glUniform1i(uniform_fog_lut, 9);
}
2016-05-21 01:04:57 +02:00
current_shader = shader_cache.emplace(config, std::move(shader)).first->second.get();
unsigned int block_index =
glGetUniformBlockIndex(current_shader->shader.handle, "shader_data");
2016-05-21 01:04:57 +02:00
GLint block_size;
glGetActiveUniformBlockiv(current_shader->shader.handle, block_index,
GL_UNIFORM_BLOCK_DATA_SIZE, &block_size);
ASSERT_MSG(block_size == sizeof(UniformData),
"Uniform block size did not match! Got %d, expected %zu",
static_cast<int>(block_size), sizeof(UniformData));
glUniformBlockBinding(current_shader->shader.handle, block_index, 0);
// Update uniforms
SyncDepthScale();
SyncDepthOffset();
SyncAlphaTest();
SyncCombinerColor();
auto& tev_stages = Pica::g_state.regs.texturing.GetTevStages();
for (int index = 0; index < tev_stages.size(); ++index)
SyncTevConstColor(index, tev_stages[index]);
SyncGlobalAmbient();
for (int light_index = 0; light_index < 8; light_index++) {
SyncLightSpecular0(light_index);
SyncLightSpecular1(light_index);
SyncLightDiffuse(light_index);
SyncLightAmbient(light_index);
SyncLightPosition(light_index);
SyncLightDistanceAttenuationBias(light_index);
SyncLightDistanceAttenuationScale(light_index);
}
2016-05-21 01:04:57 +02:00
SyncFogColor();
}
}
2015-05-19 06:21:33 +02:00
void RasterizerOpenGL::SyncCullMode() {
const auto& regs = Pica::g_state.regs;
switch (regs.rasterizer.cull_mode) {
case Pica::RasterizerRegs::CullMode::KeepAll:
2015-05-19 06:21:33 +02:00
state.cull.enabled = false;
break;
case Pica::RasterizerRegs::CullMode::KeepClockWise:
2015-05-19 06:21:33 +02:00
state.cull.enabled = true;
state.cull.front_face = GL_CW;
2015-05-19 06:21:33 +02:00
break;
case Pica::RasterizerRegs::CullMode::KeepCounterClockWise:
2015-05-19 06:21:33 +02:00
state.cull.enabled = true;
state.cull.front_face = GL_CCW;
2015-05-19 06:21:33 +02:00
break;
default:
LOG_CRITICAL(Render_OpenGL, "Unknown cull mode %d", regs.rasterizer.cull_mode.Value());
2015-05-19 06:21:33 +02:00
UNIMPLEMENTED();
break;
}
}
void RasterizerOpenGL::SyncDepthScale() {
float depth_scale =
Pica::float24::FromRaw(Pica::g_state.regs.rasterizer.viewport_depth_range).ToFloat32();
if (depth_scale != uniform_block_data.data.depth_scale) {
uniform_block_data.data.depth_scale = depth_scale;
uniform_block_data.dirty = true;
}
}
2016-01-04 00:46:54 +01:00
void RasterizerOpenGL::SyncDepthOffset() {
float depth_offset =
Pica::float24::FromRaw(Pica::g_state.regs.rasterizer.viewport_depth_near_plane).ToFloat32();
if (depth_offset != uniform_block_data.data.depth_offset) {
uniform_block_data.data.depth_offset = depth_offset;
uniform_block_data.dirty = true;
}
2016-01-04 00:46:54 +01:00
}
2015-05-19 06:21:33 +02:00
void RasterizerOpenGL::SyncBlendEnabled() {
state.blend.enabled = (Pica::g_state.regs.framebuffer.output_merger.alphablend_enable == 1);
2015-05-19 06:21:33 +02:00
}
void RasterizerOpenGL::SyncBlendFuncs() {
const auto& regs = Pica::g_state.regs;
state.blend.rgb_equation =
PicaToGL::BlendEquation(regs.framebuffer.output_merger.alpha_blending.blend_equation_rgb);
state.blend.a_equation =
PicaToGL::BlendEquation(regs.framebuffer.output_merger.alpha_blending.blend_equation_a);
state.blend.src_rgb_func =
PicaToGL::BlendFunc(regs.framebuffer.output_merger.alpha_blending.factor_source_rgb);
state.blend.dst_rgb_func =
PicaToGL::BlendFunc(regs.framebuffer.output_merger.alpha_blending.factor_dest_rgb);
state.blend.src_a_func =
PicaToGL::BlendFunc(regs.framebuffer.output_merger.alpha_blending.factor_source_a);
state.blend.dst_a_func =
PicaToGL::BlendFunc(regs.framebuffer.output_merger.alpha_blending.factor_dest_a);
2015-05-19 06:21:33 +02:00
}
void RasterizerOpenGL::SyncBlendColor() {
auto blend_color =
PicaToGL::ColorRGBA8(Pica::g_state.regs.framebuffer.output_merger.blend_const.raw);
2015-05-19 06:21:33 +02:00
state.blend.color.red = blend_color[0];
state.blend.color.green = blend_color[1];
state.blend.color.blue = blend_color[2];
state.blend.color.alpha = blend_color[3];
}
2016-05-21 01:04:57 +02:00
void RasterizerOpenGL::SyncFogColor() {
const auto& regs = Pica::g_state.regs;
uniform_block_data.data.fog_color = {
regs.texturing.fog_color.r.Value() / 255.0f, regs.texturing.fog_color.g.Value() / 255.0f,
regs.texturing.fog_color.b.Value() / 255.0f,
};
2016-05-21 01:04:57 +02:00
uniform_block_data.dirty = true;
}
void RasterizerOpenGL::SyncFogLUT() {
std::array<GLuint, 128> new_data;
std::transform(Pica::g_state.fog.lut.begin(), Pica::g_state.fog.lut.end(), new_data.begin(),
[](const auto& entry) { return entry.raw; });
2016-05-21 01:04:57 +02:00
if (new_data != fog_lut_data) {
fog_lut_data = new_data;
glActiveTexture(GL_TEXTURE9);
glTexSubImage1D(GL_TEXTURE_1D, 0, 0, 128, GL_RED_INTEGER, GL_UNSIGNED_INT,
fog_lut_data.data());
2016-05-21 01:04:57 +02:00
}
}
2015-05-19 06:21:33 +02:00
void RasterizerOpenGL::SyncAlphaTest() {
const auto& regs = Pica::g_state.regs;
if (regs.framebuffer.output_merger.alpha_test.ref != uniform_block_data.data.alphatest_ref) {
uniform_block_data.data.alphatest_ref = regs.framebuffer.output_merger.alpha_test.ref;
uniform_block_data.dirty = true;
}
2015-05-19 06:21:33 +02:00
}
2015-05-26 00:39:03 +02:00
void RasterizerOpenGL::SyncLogicOp() {
state.logic_op = PicaToGL::LogicOp(Pica::g_state.regs.framebuffer.output_merger.logic_op);
2015-05-26 00:39:03 +02:00
}
void RasterizerOpenGL::SyncColorWriteMask() {
const auto& regs = Pica::g_state.regs;
auto IsColorWriteEnabled = [&](u32 value) {
return (regs.framebuffer.framebuffer.allow_color_write != 0 && value != 0) ? GL_TRUE
: GL_FALSE;
};
state.color_mask.red_enabled = IsColorWriteEnabled(regs.framebuffer.output_merger.red_enable);
state.color_mask.green_enabled =
IsColorWriteEnabled(regs.framebuffer.output_merger.green_enable);
state.color_mask.blue_enabled = IsColorWriteEnabled(regs.framebuffer.output_merger.blue_enable);
state.color_mask.alpha_enabled =
IsColorWriteEnabled(regs.framebuffer.output_merger.alpha_enable);
}
void RasterizerOpenGL::SyncStencilWriteMask() {
const auto& regs = Pica::g_state.regs;
state.stencil.write_mask =
(regs.framebuffer.framebuffer.allow_depth_stencil_write != 0)
? static_cast<GLuint>(regs.framebuffer.output_merger.stencil_test.write_mask)
: 0;
}
void RasterizerOpenGL::SyncDepthWriteMask() {
const auto& regs = Pica::g_state.regs;
state.depth.write_mask = (regs.framebuffer.framebuffer.allow_depth_stencil_write != 0 &&
regs.framebuffer.output_merger.depth_write_enable)
? GL_TRUE
: GL_FALSE;
}
2015-05-19 06:21:33 +02:00
void RasterizerOpenGL::SyncStencilTest() {
const auto& regs = Pica::g_state.regs;
state.stencil.test_enabled =
regs.framebuffer.output_merger.stencil_test.enable &&
regs.framebuffer.framebuffer.depth_format == Pica::FramebufferRegs::DepthFormat::D24S8;
state.stencil.test_func =
PicaToGL::CompareFunc(regs.framebuffer.output_merger.stencil_test.func);
state.stencil.test_ref = regs.framebuffer.output_merger.stencil_test.reference_value;
state.stencil.test_mask = regs.framebuffer.output_merger.stencil_test.input_mask;
state.stencil.action_stencil_fail =
PicaToGL::StencilOp(regs.framebuffer.output_merger.stencil_test.action_stencil_fail);
state.stencil.action_depth_fail =
PicaToGL::StencilOp(regs.framebuffer.output_merger.stencil_test.action_depth_fail);
state.stencil.action_depth_pass =
PicaToGL::StencilOp(regs.framebuffer.output_merger.stencil_test.action_depth_pass);
2015-05-19 06:21:33 +02:00
}
void RasterizerOpenGL::SyncDepthTest() {
const auto& regs = Pica::g_state.regs;
state.depth.test_enabled = regs.framebuffer.output_merger.depth_test_enable == 1 ||
regs.framebuffer.output_merger.depth_write_enable == 1;
state.depth.test_func =
regs.framebuffer.output_merger.depth_test_enable == 1
? PicaToGL::CompareFunc(regs.framebuffer.output_merger.depth_test_func)
: GL_ALWAYS;
2015-05-19 06:21:33 +02:00
}
void RasterizerOpenGL::SyncCombinerColor() {
auto combiner_color =
PicaToGL::ColorRGBA8(Pica::g_state.regs.texturing.tev_combiner_buffer_color.raw);
if (combiner_color != uniform_block_data.data.tev_combiner_buffer_color) {
uniform_block_data.data.tev_combiner_buffer_color = combiner_color;
uniform_block_data.dirty = true;
}
2015-05-19 06:21:33 +02:00
}
void RasterizerOpenGL::SyncTevConstColor(int stage_index,
const Pica::TexturingRegs::TevStageConfig& tev_stage) {
auto const_color = PicaToGL::ColorRGBA8(tev_stage.const_color);
if (const_color != uniform_block_data.data.const_color[stage_index]) {
uniform_block_data.data.const_color[stage_index] = const_color;
uniform_block_data.dirty = true;
}
2015-05-19 06:21:33 +02:00
}
void RasterizerOpenGL::SyncGlobalAmbient() {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.global_ambient);
if (color != uniform_block_data.data.lighting_global_ambient) {
uniform_block_data.data.lighting_global_ambient = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightingLUT(unsigned lut_index) {
std::array<GLvec4, 256> new_data;
for (unsigned offset = 0; offset < new_data.size(); ++offset) {
new_data[offset][0] = Pica::g_state.lighting.luts[(lut_index * 4) + 0][offset].ToFloat();
new_data[offset][1] = Pica::g_state.lighting.luts[(lut_index * 4) + 1][offset].ToFloat();
new_data[offset][2] = Pica::g_state.lighting.luts[(lut_index * 4) + 2][offset].ToFloat();
new_data[offset][3] = Pica::g_state.lighting.luts[(lut_index * 4) + 3][offset].ToFloat();
}
if (new_data != lighting_lut_data[lut_index]) {
lighting_lut_data[lut_index] = new_data;
glActiveTexture(GL_TEXTURE3 + lut_index);
glTexSubImage1D(GL_TEXTURE_1D, 0, 0, 256, GL_RGBA, GL_FLOAT,
lighting_lut_data[lut_index].data());
}
}
void RasterizerOpenGL::SyncLightSpecular0(int light_index) {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].specular_0);
if (color != uniform_block_data.data.light_src[light_index].specular_0) {
uniform_block_data.data.light_src[light_index].specular_0 = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightSpecular1(int light_index) {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].specular_1);
if (color != uniform_block_data.data.light_src[light_index].specular_1) {
uniform_block_data.data.light_src[light_index].specular_1 = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightDiffuse(int light_index) {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].diffuse);
if (color != uniform_block_data.data.light_src[light_index].diffuse) {
uniform_block_data.data.light_src[light_index].diffuse = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightAmbient(int light_index) {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].ambient);
if (color != uniform_block_data.data.light_src[light_index].ambient) {
uniform_block_data.data.light_src[light_index].ambient = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightPosition(int light_index) {
GLvec3 position = {
Pica::float16::FromRaw(Pica::g_state.regs.lighting.light[light_index].x).ToFloat32(),
Pica::float16::FromRaw(Pica::g_state.regs.lighting.light[light_index].y).ToFloat32(),
Pica::float16::FromRaw(Pica::g_state.regs.lighting.light[light_index].z).ToFloat32()};
if (position != uniform_block_data.data.light_src[light_index].position) {
uniform_block_data.data.light_src[light_index].position = position;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightDistanceAttenuationBias(int light_index) {
GLfloat dist_atten_bias =
Pica::float20::FromRaw(Pica::g_state.regs.lighting.light[light_index].dist_atten_bias)
.ToFloat32();
if (dist_atten_bias != uniform_block_data.data.light_src[light_index].dist_atten_bias) {
uniform_block_data.data.light_src[light_index].dist_atten_bias = dist_atten_bias;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightDistanceAttenuationScale(int light_index) {
GLfloat dist_atten_scale =
Pica::float20::FromRaw(Pica::g_state.regs.lighting.light[light_index].dist_atten_scale)
.ToFloat32();
if (dist_atten_scale != uniform_block_data.data.light_src[light_index].dist_atten_scale) {
uniform_block_data.data.light_src[light_index].dist_atten_scale = dist_atten_scale;
uniform_block_data.dirty = true;
}
}