citra/src/video_core/renderer_opengl/gl_texture_runtime.cpp
GPUCode dfa2fd0e0d
Add vulkan backend (#6512)
* code: Prepare frontend for vulkan support

* citra_qt: Add vulkan options to the GUI

* vk_instance: Collect tooling info

* renderer_vulkan: Add vulkan backend

* qt: Fix fullscreen and resize issues on macOS. (#47)

* qt: Fix bugged macOS full screen transition.

* renderer/vulkan: Fix swapchain recreation destroying in-use semaphore.

* renderer/vulkan: Make gl_Position invariant. (#48)

This fixes an issue with black artifacts in Pokemon games on Apple GPUs.
If the vertex calculations differ slightly between render passes, it can
cause parts of model faces to fail depth test.

* vk_renderpass_cache: Bump pixel format count

* android: Custom driver code

* vk_instance: Set moltenvk configuration

* rasterizer_cache: Proper surface unregister

* citra_qt: Fix invalid characters

* vk_rasterizer: Correct special unbind

* android: Allow async presentation toggle

* vk_graphics_pipeline: Fix async shader compilation

* We were actually waiting for the pipelines regardless of the setting, oops

* vk_rasterizer: More robust attribute loading

* android: Move PollEvents to OpenGL window

* Vulkan does not need this and it causes problems

* vk_instance: Enable robust buffer access

* Improves stability on mali devices

* vk_renderpass_cache: Bring back renderpass flushing

* externals: Update vulkan-headers

* gl_rasterizer: Separable shaders for everyone

* vk_blit_helper: Corect depth to color convertion

* renderer_vulkan: Implement reinterpretation with copy

* Allows reinterpreteration with simply copy on AMD

* vk_graphics_pipeline: Only fast compile if no shaders are pending

* With this shaders weren't being compiled in parallel

* vk_swapchain: Ensure vsync doesn't lock framerate

* vk_present_window: Match guest swapchain size to vulkan image count

* Less latency and fixes crashes that were caused by images being deleted before free

* vk_instance: Blacklist VK_EXT_pipeline_creation_cache_control with nvidia gpus

* Resolves crashes when async shader compilation is enabled

* vk_rasterizer: Bump async threshold to 6

* Many games have fullscreen quads with 6 vertices. Fixes pokemon textures missing with async shaders

* android: More robust surface recreation

* renderer_vulkan: Fix dynamic state being lost

* vk_pipeline_cache: Skip cache save when no pipeline cache exists

* This is the cache when loading a save state

* sdl: Fix surface initialization on macOS. (#49)

* sdl: Fix surface initialization on macOS.

* sdl: Fix render window events not being handled under Vulkan.

* renderer/vulkan: Fix binding/unbinding of shadow rendering buffer.

* vk_stream_buffer: Respect non coherent access alignment

* Required by nvidia GPUs on MacOS

* renderer/vulkan: Support VK_EXT_fragment_shader_interlock for shadow rendering. (#51)

* renderer_vulkan: Port some recent shader fixes

* vk_pipeline_cache: Improve shadow detection

* vk_swapchain: Add missing check

* renderer_vulkan: Fix hybrid screen

* Revert "gl_rasterizer: Separable shaders for everyone"

Causes crashes on mali GPUs, will need separate PR

This reverts commit d22d556d30.

* renderer_vulkan: Fix flipped screenshot

---------

Co-authored-by: Steveice10 <1269164+Steveice10@users.noreply.github.com>
2023-09-13 01:28:50 +03:00

695 lines
26 KiB
C++

// Copyright 2023 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/scope_exit.h"
#include "common/settings.h"
#include "video_core/custom_textures/material.h"
#include "video_core/renderer_base.h"
#include "video_core/renderer_opengl/gl_driver.h"
#include "video_core/renderer_opengl/gl_state.h"
#include "video_core/renderer_opengl/gl_texture_mailbox.h"
#include "video_core/renderer_opengl/gl_texture_runtime.h"
#include "video_core/renderer_opengl/pica_to_gl.h"
namespace OpenGL {
namespace {
using VideoCore::MapType;
using VideoCore::PixelFormat;
using VideoCore::SurfaceFlagBits;
using VideoCore::SurfaceType;
using VideoCore::TextureType;
constexpr GLenum TEMP_UNIT = GL_TEXTURE15;
constexpr FormatTuple DEFAULT_TUPLE = {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE};
static constexpr std::array<FormatTuple, 4> DEPTH_TUPLES = {{
{GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT}, // D16
{},
{GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT}, // D24
{GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8}, // D24S8
}};
static constexpr std::array<FormatTuple, 5> COLOR_TUPLES = {{
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8}, // RGBA8
{GL_RGB8, GL_BGR, GL_UNSIGNED_BYTE}, // RGB8
{GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1}, // RGB5A1
{GL_RGB565, GL_RGB, GL_UNSIGNED_SHORT_5_6_5}, // RGB565
{GL_RGBA4, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4}, // RGBA4
}};
static constexpr std::array<FormatTuple, 5> COLOR_TUPLES_OES = {{
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE}, // RGBA8
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE}, // RGB8
{GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1}, // RGB5A1
{GL_RGB565, GL_RGB, GL_UNSIGNED_SHORT_5_6_5}, // RGB565
{GL_RGBA4, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4}, // RGBA4
}};
static constexpr std::array<FormatTuple, 8> CUSTOM_TUPLES = {{
DEFAULT_TUPLE,
{GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_UNSIGNED_BYTE},
{GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_UNSIGNED_BYTE},
{GL_COMPRESSED_RG_RGTC2, GL_COMPRESSED_RG_RGTC2, GL_UNSIGNED_BYTE},
{GL_COMPRESSED_RGBA_BPTC_UNORM_ARB, GL_COMPRESSED_RGBA_BPTC_UNORM_ARB, GL_UNSIGNED_BYTE},
{GL_COMPRESSED_RGBA_ASTC_4x4, GL_COMPRESSED_RGBA_ASTC_4x4, GL_UNSIGNED_BYTE},
{GL_COMPRESSED_RGBA_ASTC_6x6, GL_COMPRESSED_RGBA_ASTC_6x6, GL_UNSIGNED_BYTE},
{GL_COMPRESSED_RGBA_ASTC_8x6, GL_COMPRESSED_RGBA_ASTC_8x6, GL_UNSIGNED_BYTE},
}};
[[nodiscard]] GLbitfield MakeBufferMask(SurfaceType type) {
switch (type) {
case SurfaceType::Color:
case SurfaceType::Texture:
case SurfaceType::Fill:
return GL_COLOR_BUFFER_BIT;
case SurfaceType::Depth:
return GL_DEPTH_BUFFER_BIT;
case SurfaceType::DepthStencil:
return GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT;
default:
UNREACHABLE_MSG("Invalid surface type!");
}
return GL_COLOR_BUFFER_BIT;
}
[[nodiscard]] u32 FboIndex(VideoCore::SurfaceType type) {
switch (type) {
case VideoCore::SurfaceType::Color:
case VideoCore::SurfaceType::Texture:
case VideoCore::SurfaceType::Fill:
return 0;
case VideoCore::SurfaceType::Depth:
return 1;
case VideoCore::SurfaceType::DepthStencil:
return 2;
default:
UNREACHABLE_MSG("Invalid surface type!");
}
return 0;
}
[[nodiscard]] OGLTexture MakeHandle(GLenum target, u32 width, u32 height, u32 levels,
const FormatTuple& tuple, std::string_view debug_name = "") {
OGLTexture texture{};
texture.Create();
glBindTexture(target, texture.handle);
glTexStorage2D(target, levels, tuple.internal_format, width, height);
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
if (!debug_name.empty()) {
glObjectLabel(GL_TEXTURE, texture.handle, -1, debug_name.data());
}
return texture;
}
} // Anonymous namespace
TextureRuntime::TextureRuntime(const Driver& driver_, VideoCore::RendererBase& renderer)
: driver{driver_}, blit_helper{driver} {
for (std::size_t i = 0; i < draw_fbos.size(); ++i) {
draw_fbos[i].Create();
read_fbos[i].Create();
}
}
TextureRuntime::~TextureRuntime() = default;
u32 TextureRuntime::RemoveThreshold() {
return SWAP_CHAIN_SIZE;
}
bool TextureRuntime::NeedsConversion(VideoCore::PixelFormat pixel_format) const {
const bool should_convert = pixel_format == PixelFormat::RGBA8 || // Needs byteswap
pixel_format == PixelFormat::RGB8; // Is converted to RGBA8
return driver.IsOpenGLES() && should_convert;
}
VideoCore::StagingData TextureRuntime::FindStaging(u32 size, bool upload) {
if (size > staging_buffer.size()) {
staging_buffer.resize(size);
}
return VideoCore::StagingData{
.size = size,
.offset = 0,
.mapped = std::span{staging_buffer.data(), size},
};
}
const FormatTuple& TextureRuntime::GetFormatTuple(PixelFormat pixel_format) const {
if (pixel_format == PixelFormat::Invalid) {
return DEFAULT_TUPLE;
}
const auto type = GetFormatType(pixel_format);
const std::size_t format_index = static_cast<std::size_t>(pixel_format);
if (type == SurfaceType::Color) {
ASSERT(format_index < COLOR_TUPLES.size());
return (driver.IsOpenGLES() ? COLOR_TUPLES_OES : COLOR_TUPLES)[format_index];
} else if (type == SurfaceType::Depth || type == SurfaceType::DepthStencil) {
const std::size_t tuple_idx = format_index - 14;
ASSERT(tuple_idx < DEPTH_TUPLES.size());
return DEPTH_TUPLES[tuple_idx];
}
return DEFAULT_TUPLE;
}
const FormatTuple& TextureRuntime::GetFormatTuple(VideoCore::CustomPixelFormat pixel_format) {
const std::size_t format_index = static_cast<std::size_t>(pixel_format);
return CUSTOM_TUPLES[format_index];
}
bool TextureRuntime::Reinterpret(Surface& source, Surface& dest,
const VideoCore::TextureCopy& copy) {
const PixelFormat src_format = source.pixel_format;
const PixelFormat dst_format = dest.pixel_format;
ASSERT_MSG(src_format != dst_format, "Reinterpretation with the same format is invalid");
if (src_format == PixelFormat::D24S8 && dst_format == PixelFormat::RGBA8) {
blit_helper.ConvertDS24S8ToRGBA8(source, dest, copy);
} else if (src_format == PixelFormat::RGBA4 && dst_format == PixelFormat::RGB5A1) {
blit_helper.ConvertRGBA4ToRGB5A1(source, dest, copy);
} else {
LOG_WARNING(Render_OpenGL, "Unimplemented reinterpretation {} -> {}",
VideoCore::PixelFormatAsString(src_format),
VideoCore::PixelFormatAsString(dst_format));
return false;
}
return true;
}
bool TextureRuntime::ClearTextureWithoutFbo(Surface& surface,
const VideoCore::TextureClear& clear) {
if (!driver.HasArbClearTexture() || driver.HasBug(DriverBug::BrokenClearTexture)) {
return false;
}
GLenum format{};
GLenum type{};
switch (surface.type) {
case SurfaceType::Color:
case SurfaceType::Texture:
format = GL_RGBA;
type = GL_FLOAT;
break;
case SurfaceType::Depth:
format = GL_DEPTH_COMPONENT;
type = GL_FLOAT;
break;
case SurfaceType::DepthStencil:
format = GL_DEPTH_STENCIL;
type = GL_FLOAT_32_UNSIGNED_INT_24_8_REV;
break;
default:
UNREACHABLE_MSG("Unknown surface type {}", surface.type);
}
glClearTexSubImage(surface.Handle(), clear.texture_level, clear.texture_rect.left,
clear.texture_rect.bottom, 0, clear.texture_rect.GetWidth(),
clear.texture_rect.GetHeight(), 1, format, type, &clear.value);
return true;
}
void TextureRuntime::ClearTexture(Surface& surface, const VideoCore::TextureClear& clear) {
if (ClearTextureWithoutFbo(surface, clear)) {
return;
}
OpenGLState state = OpenGLState::GetCurState();
state.scissor.enabled = true;
state.scissor.x = clear.texture_rect.left;
state.scissor.y = clear.texture_rect.bottom;
state.scissor.width = clear.texture_rect.GetWidth();
state.scissor.height = clear.texture_rect.GetHeight();
state.draw.draw_framebuffer = draw_fbos[FboIndex(surface.type)].handle;
state.Apply();
surface.Attach(GL_DRAW_FRAMEBUFFER, clear.texture_level, 0);
switch (surface.type) {
case SurfaceType::Color:
case SurfaceType::Texture:
state.color_mask.red_enabled = true;
state.color_mask.green_enabled = true;
state.color_mask.blue_enabled = true;
state.color_mask.alpha_enabled = true;
state.Apply();
glClearBufferfv(GL_COLOR, 0, clear.value.color.AsArray());
break;
case SurfaceType::Depth:
state.depth.write_mask = GL_TRUE;
state.Apply();
glClearBufferfv(GL_DEPTH, 0, &clear.value.depth);
break;
case SurfaceType::DepthStencil:
state.depth.write_mask = GL_TRUE;
state.stencil.write_mask = -1;
state.Apply();
glClearBufferfi(GL_DEPTH_STENCIL, 0, clear.value.depth, clear.value.stencil);
break;
default:
UNREACHABLE_MSG("Unknown surface type {}", surface.type);
}
}
bool TextureRuntime::CopyTextures(Surface& source, Surface& dest,
const VideoCore::TextureCopy& copy) {
const GLenum src_textarget = source.texture_type == VideoCore::TextureType::CubeMap
? GL_TEXTURE_CUBE_MAP
: GL_TEXTURE_2D;
const GLenum dest_textarget =
dest.texture_type == VideoCore::TextureType::CubeMap ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D;
glCopyImageSubData(source.Handle(), src_textarget, copy.src_level, copy.src_offset.x,
copy.src_offset.y, copy.src_layer, dest.Handle(), dest_textarget,
copy.dst_level, copy.dst_offset.x, copy.dst_offset.y, copy.dst_layer,
copy.extent.width, copy.extent.height, 1);
return true;
}
bool TextureRuntime::BlitTextures(Surface& source, Surface& dest,
const VideoCore::TextureBlit& blit) {
OpenGLState state = OpenGLState::GetCurState();
state.scissor.enabled = false;
state.draw.read_framebuffer = read_fbos[FboIndex(source.type)].handle;
state.draw.draw_framebuffer = draw_fbos[FboIndex(dest.type)].handle;
state.Apply();
source.Attach(GL_READ_FRAMEBUFFER, blit.src_level, blit.src_layer);
dest.Attach(GL_DRAW_FRAMEBUFFER, blit.dst_level, blit.dst_layer);
// Note: shadow map is treated as RGBA8 format in PICA, as well as in the rasterizer cache, but
// doing linear intepolation componentwise would cause incorrect value.
const GLbitfield buffer_mask = MakeBufferMask(source.type);
const bool is_shadow_map = True(source.flags & SurfaceFlagBits::ShadowMap);
const GLenum filter =
buffer_mask == GL_COLOR_BUFFER_BIT && !is_shadow_map ? GL_LINEAR : GL_NEAREST;
glBlitFramebuffer(blit.src_rect.left, blit.src_rect.bottom, blit.src_rect.right,
blit.src_rect.top, blit.dst_rect.left, blit.dst_rect.bottom,
blit.dst_rect.right, blit.dst_rect.top, buffer_mask, filter);
return true;
}
void TextureRuntime::GenerateMipmaps(Surface& surface) {
OpenGLState state = OpenGLState::GetCurState();
const auto generate = [&](u32 index) {
state.texture_units[0].texture_2d = surface.Handle(index);
state.Apply();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, surface.levels - 1);
glGenerateMipmap(GL_TEXTURE_2D);
};
generate(1);
if (surface.HasNormalMap()) {
generate(2);
}
}
Surface::Surface(TextureRuntime& runtime_, const VideoCore::SurfaceParams& params)
: SurfaceBase{params}, driver{&runtime_.GetDriver()}, runtime{&runtime_},
tuple{runtime->GetFormatTuple(pixel_format)} {
if (pixel_format == PixelFormat::Invalid) {
return;
}
glActiveTexture(TEMP_UNIT);
const GLenum target =
texture_type == VideoCore::TextureType::CubeMap ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D;
textures[0] = MakeHandle(target, width, height, levels, tuple, DebugName(false));
if (res_scale != 1) {
textures[1] = MakeHandle(target, GetScaledWidth(), GetScaledHeight(), levels, tuple,
DebugName(true, false));
}
}
Surface::Surface(TextureRuntime& runtime, const VideoCore::SurfaceBase& surface,
const VideoCore::Material* mat)
: SurfaceBase{surface}, tuple{runtime.GetFormatTuple(mat->format)} {
if (mat && !driver->IsCustomFormatSupported(mat->format)) {
return;
}
glActiveTexture(TEMP_UNIT);
const GLenum target =
texture_type == VideoCore::TextureType::CubeMap ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D;
custom_format = mat->format;
material = mat;
textures[0] = MakeHandle(target, mat->width, mat->height, levels, tuple, DebugName(false));
if (res_scale != 1) {
textures[1] = MakeHandle(target, mat->width, mat->height, levels, DEFAULT_TUPLE,
DebugName(true, true));
}
const bool has_normal = mat->Map(MapType::Normal);
if (has_normal) {
textures[2] =
MakeHandle(target, mat->width, mat->height, levels, tuple, DebugName(true, true));
}
}
Surface::~Surface() = default;
GLuint Surface::Handle(u32 index) const noexcept {
if (!textures[index].handle) {
return textures[0].handle;
}
return textures[index].handle;
}
GLuint Surface::CopyHandle() noexcept {
if (!copy_texture.handle) {
copy_texture = MakeHandle(GL_TEXTURE_2D, GetScaledWidth(), GetScaledHeight(), levels, tuple,
DebugName(true));
}
for (u32 level = 0; level < levels; level++) {
const u32 width = GetScaledWidth() >> level;
const u32 height = GetScaledHeight() >> level;
glCopyImageSubData(Handle(1), GL_TEXTURE_2D, level, 0, 0, 0, copy_texture.handle,
GL_TEXTURE_2D, level, 0, 0, 0, width, height, 1);
}
return copy_texture.handle;
}
void Surface::Upload(const VideoCore::BufferTextureCopy& upload,
const VideoCore::StagingData& staging) {
ASSERT(stride * GetFormatBytesPerPixel(pixel_format) % 4 == 0);
const u32 unscaled_width = upload.texture_rect.GetWidth();
const u32 unscaled_height = upload.texture_rect.GetHeight();
glPixelStorei(GL_UNPACK_ROW_LENGTH, unscaled_width);
glActiveTexture(TEMP_UNIT);
glBindTexture(GL_TEXTURE_2D, Handle(0));
glTexSubImage2D(GL_TEXTURE_2D, upload.texture_level, upload.texture_rect.left,
upload.texture_rect.bottom, unscaled_width, unscaled_height, tuple.format,
tuple.type, staging.mapped.data());
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
const VideoCore::TextureBlit blit = {
.src_level = upload.texture_level,
.dst_level = upload.texture_level,
.src_rect = upload.texture_rect,
.dst_rect = upload.texture_rect * res_scale,
};
if (res_scale != 1 && !runtime->blit_helper.Filter(*this, blit)) {
BlitScale(blit, true);
}
}
void Surface::UploadCustom(const VideoCore::Material* material, u32 level) {
const u32 width = material->width;
const u32 height = material->height;
const auto color = material->textures[0];
const Common::Rectangle filter_rect{0U, height, width, 0U};
glActiveTexture(TEMP_UNIT);
glPixelStorei(GL_UNPACK_ROW_LENGTH, width);
const auto upload = [&](u32 index, VideoCore::CustomTexture* texture) {
glBindTexture(GL_TEXTURE_2D, Handle(index));
if (VideoCore::IsCustomFormatCompressed(custom_format)) {
const GLsizei image_size = static_cast<GLsizei>(texture->data.size());
glCompressedTexSubImage2D(GL_TEXTURE_2D, level, 0, 0, width, height, tuple.format,
image_size, texture->data.data());
} else {
glTexSubImage2D(GL_TEXTURE_2D, level, 0, 0, width, height, tuple.format, tuple.type,
texture->data.data());
}
};
upload(0, color);
const VideoCore::TextureBlit blit = {
.src_rect = filter_rect,
.dst_rect = filter_rect,
};
if (res_scale != 1 && !runtime->blit_helper.Filter(*this, blit)) {
BlitScale(blit, true);
}
for (u32 i = 1; i < VideoCore::MAX_MAPS; i++) {
const auto texture = material->textures[i];
if (!texture) {
continue;
}
upload(i + 1, texture);
}
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
}
void Surface::Download(const VideoCore::BufferTextureCopy& download,
const VideoCore::StagingData& staging) {
ASSERT(stride * GetFormatBytesPerPixel(pixel_format) % 4 == 0);
const u32 unscaled_width = download.texture_rect.GetWidth();
const u32 unscaled_height = download.texture_rect.GetHeight();
glPixelStorei(GL_UNPACK_ROW_LENGTH, unscaled_width);
// Scale down upscaled data before downloading it
if (res_scale != 1) {
const VideoCore::TextureBlit blit = {
.src_level = download.texture_level,
.dst_level = download.texture_level,
.src_rect = download.texture_rect * res_scale,
.dst_rect = download.texture_rect,
};
BlitScale(blit, false);
}
// Try to download without using an fbo. This should succeed on recent desktop drivers
if (DownloadWithoutFbo(download, staging)) {
return;
}
OpenGLState state = OpenGLState::GetCurState();
state.scissor.enabled = false;
state.draw.read_framebuffer = runtime->read_fbos[FboIndex(type)].handle;
state.Apply();
Attach(GL_READ_FRAMEBUFFER, download.texture_level, 0, false);
// Read the pixel data to the staging buffer
const auto& tuple = runtime->GetFormatTuple(pixel_format);
glReadPixels(download.texture_rect.left, download.texture_rect.bottom, unscaled_width,
unscaled_height, tuple.format, tuple.type, staging.mapped.data());
glPixelStorei(GL_PACK_ROW_LENGTH, 0);
}
bool Surface::DownloadWithoutFbo(const VideoCore::BufferTextureCopy& download,
const VideoCore::StagingData& staging) {
if (driver->IsOpenGLES()) {
return false;
}
const auto& tuple = runtime->GetFormatTuple(pixel_format);
const u32 unscaled_width = download.texture_rect.GetWidth();
glActiveTexture(TEMP_UNIT);
glPixelStorei(GL_PACK_ROW_LENGTH, unscaled_width);
SCOPE_EXIT({ glPixelStorei(GL_PACK_ROW_LENGTH, 0); });
// Prefer glGetTextureSubImage in most cases since it's the fastest and most convenient option
const bool is_full_download = download.texture_rect == GetRect();
const bool has_sub_image = driver->HasArbGetTextureSubImage();
if (has_sub_image) {
const GLsizei buf_size = static_cast<GLsizei>(staging.mapped.size());
glGetTextureSubImage(Handle(0), download.texture_level, download.texture_rect.left,
download.texture_rect.bottom, 0, download.texture_rect.GetWidth(),
download.texture_rect.GetHeight(), 1, tuple.format, tuple.type,
buf_size, staging.mapped.data());
return true;
} else if (is_full_download) {
// This should only trigger for full texture downloads in oldish intel drivers
// that only support up to 4.3
OpenGLState state = OpenGLState::GetCurState();
state.texture_units[0].texture_2d = Handle(0);
state.Apply();
glGetTexImage(GL_TEXTURE_2D, download.texture_level, tuple.format, tuple.type,
staging.mapped.data());
return true;
}
return false;
}
void Surface::Attach(GLenum target, u32 level, u32 layer, bool scaled) {
const GLuint handle = Handle(static_cast<u32>(scaled));
const GLenum textarget = texture_type == TextureType::CubeMap
? GL_TEXTURE_CUBE_MAP_POSITIVE_X + layer
: GL_TEXTURE_2D;
switch (type) {
case SurfaceType::Color:
case SurfaceType::Texture:
glFramebufferTexture2D(target, GL_COLOR_ATTACHMENT0, textarget, handle, level);
break;
case SurfaceType::Depth:
glFramebufferTexture2D(target, GL_DEPTH_ATTACHMENT, textarget, handle, level);
break;
case SurfaceType::DepthStencil:
glFramebufferTexture2D(target, GL_DEPTH_STENCIL_ATTACHMENT, textarget, handle, level);
break;
default:
UNREACHABLE_MSG("Invalid surface type!");
}
}
void Surface::ScaleUp(u32 new_scale) {
if (res_scale == new_scale || new_scale == 1) {
return;
}
res_scale = new_scale;
textures[1] = MakeHandle(GL_TEXTURE_2D, GetScaledWidth(), GetScaledHeight(), levels, tuple,
DebugName(true));
for (u32 level = 0; level < levels; level++) {
const VideoCore::TextureBlit blit = {
.src_level = level,
.dst_level = level,
.src_rect = GetRect(level),
.dst_rect = GetScaledRect(level),
};
BlitScale(blit, true);
}
}
u32 Surface::GetInternalBytesPerPixel() const {
// RGB8 is converted to RGBA8 on OpenGL ES since it doesn't support BGR8
if (driver->IsOpenGLES() && pixel_format == VideoCore::PixelFormat::RGB8) {
return 4;
}
return GetFormatBytesPerPixel(pixel_format);
}
void Surface::BlitScale(const VideoCore::TextureBlit& blit, bool up_scale) {
const u32 fbo_index = FboIndex(type);
OpenGLState state = OpenGLState::GetCurState();
state.scissor.enabled = false;
state.draw.read_framebuffer = runtime->read_fbos[fbo_index].handle;
state.draw.draw_framebuffer = runtime->draw_fbos[fbo_index].handle;
state.Apply();
Attach(GL_READ_FRAMEBUFFER, blit.src_level, blit.src_layer, !up_scale);
Attach(GL_DRAW_FRAMEBUFFER, blit.dst_level, blit.dst_layer, up_scale);
const GLenum buffer_mask = MakeBufferMask(type);
const GLenum filter = buffer_mask == GL_COLOR_BUFFER_BIT ? GL_LINEAR : GL_NEAREST;
glBlitFramebuffer(blit.src_rect.left, blit.src_rect.bottom, blit.src_rect.right,
blit.src_rect.top, blit.dst_rect.left, blit.dst_rect.bottom,
blit.dst_rect.right, blit.dst_rect.top, buffer_mask, filter);
}
Framebuffer::Framebuffer(TextureRuntime& runtime, const VideoCore::FramebufferParams& params,
const Surface* color, const Surface* depth)
: VideoCore::FramebufferParams{params}, res_scale{color ? color->res_scale
: (depth ? depth->res_scale : 1u)} {
if (shadow_rendering && !color) {
return;
}
if (color) {
attachments[0] = color->Handle();
}
if (depth) {
attachments[1] = depth->Handle();
}
framebuffer.Create();
OpenGLState state = OpenGLState::GetCurState();
state.draw.draw_framebuffer = framebuffer.handle;
state.Apply();
if (shadow_rendering) {
glFramebufferParameteri(GL_DRAW_FRAMEBUFFER, GL_FRAMEBUFFER_DEFAULT_WIDTH,
color->width * res_scale);
glFramebufferParameteri(GL_DRAW_FRAMEBUFFER, GL_FRAMEBUFFER_DEFAULT_HEIGHT,
color->height * res_scale);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
} else {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
color ? color->Handle() : 0, color_level);
if (depth) {
if (depth->pixel_format == PixelFormat::D24S8) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
GL_TEXTURE_2D, depth->Handle(), depth_level);
} else {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
depth->Handle(), depth_level);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
}
} else {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
0, 0);
}
}
}
Framebuffer::~Framebuffer() = default;
Sampler::Sampler(TextureRuntime&, VideoCore::SamplerParams params) {
const GLenum mag_filter = PicaToGL::TextureMagFilterMode(params.mag_filter);
const GLenum min_filter = PicaToGL::TextureMinFilterMode(params.min_filter, params.mip_filter);
const GLenum wrap_s = PicaToGL::WrapMode(params.wrap_s);
const GLenum wrap_t = PicaToGL::WrapMode(params.wrap_t);
const Common::Vec4f gl_color = PicaToGL::ColorRGBA8(params.border_color);
const auto lod_min = static_cast<float>(params.lod_min);
const auto lod_max = static_cast<float>(params.lod_max);
sampler.Create();
const GLuint handle = sampler.handle;
glSamplerParameteri(handle, GL_TEXTURE_MAG_FILTER, mag_filter);
glSamplerParameteri(handle, GL_TEXTURE_MIN_FILTER, min_filter);
glSamplerParameteri(handle, GL_TEXTURE_WRAP_S, wrap_s);
glSamplerParameteri(handle, GL_TEXTURE_WRAP_T, wrap_t);
glSamplerParameterfv(handle, GL_TEXTURE_BORDER_COLOR, gl_color.AsArray());
glSamplerParameterf(handle, GL_TEXTURE_MIN_LOD, lod_min);
glSamplerParameterf(handle, GL_TEXTURE_MAX_LOD, lod_max);
}
Sampler::~Sampler() = default;
DebugScope::DebugScope(TextureRuntime& runtime, Common::Vec4f, std::string_view label)
: local_scope_depth{global_scope_depth++} {
if (!Settings::values.renderer_debug) {
return;
}
glPushDebugGroup(GL_DEBUG_SOURCE_APPLICATION, local_scope_depth,
static_cast<GLsizei>(label.size()), label.data());
}
DebugScope::~DebugScope() {
if (!Settings::values.renderer_debug) {
return;
}
glPopDebugGroup();
global_scope_depth--;
}
} // namespace OpenGL